【题目】如图,点A,B在⊙O上,点C在⊙O外,连接AB和OC交于D,且OB⊥OC,AC=CD.
![]()
(1)判断AC与⊙O的位置关系,并证明你的结论;
(2)若OC=13,OD=1,求⊙O的半径及tanB.
参考答案:
【答案】(1)AC是⊙O的切线;见解析(2)
.
【解析】
试题分析:(1)根据已知条件“∠CAD=∠CDA”、对顶角∠BDO=∠CDA可以推知∠BDO=∠CAD;然后根据等腰三角形OAB的两个底角相等、直角三角形的两个锐角互余的性质推知∠B+∠BDO=∠OAB+∠CAD=90°,即∠OAC=90°,可得AC是⊙O的切线.
(2)由勾股定理求出OA,得出OB,由三角函数的定义求出tanB即可.
(1)证明:连接OA,如图所示:
∵AC=CD,
∴∠CAD=∠CDA,
∵∠BDO=∠CDA,
∴∠BDO=∠CAD,
又∵OA=OB,
∴∠B=∠OAB,
∵OB⊥OC,
∴∠B+∠BDO=∠OAB+∠CAD=90°,
即∠OAC=90°,
∴AC是⊙O的切线;
(2)解:∵OC=13,OD=1,
∴AC=CD=OC﹣OD=12,
∴OA=
=
=5,
即⊙O的半径为5,
∵OB=OA=5,
∴tanB=
=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。
求证:(1)AD=AG,(2)AD与AG的位置关系如何。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.

(1)如图①,当点Q在线段AC上,求证:△BPE∽△CEQ;
(2)如图①,当点Q在线段AC上,当AP=4,BP=8时,求P、Q两点间的距离;
(3)如图②,当点Q在线段CA的延长线上,若BP=2a,CQ=9a,求PE:EQ的值,并直接写出△EPQ的面积 (用含a的代数式表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是( )

A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA
-
科目: 来源: 题型:
查看答案和解析>>【题目】小马虎同学在计算某个多边形的内角和时得到1840°,老师说他算错了,于是小马虎认真地检查了一遍发现漏算了一个内角,求漏算的那个内角是多少度?这个多边形是几边形?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知⊙O的半径为5,⊙O的圆心为坐标原点,点A的坐标为(3,4),则点A与⊙O的位置关系是__________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一居民楼底部B与山脚P位于同一水平线上,小李在P处测得居民楼顶A的仰角为60°,然后他从P处沿坡角为45°的山坡向上走到C处,这时点C与点A恰好在同一水平线上,点A、B、P、C在同一平面内.

(1)若BP=10m,求居民楼AB的高度;(精确到0.1,
≈1.732)(2)若PC=24m,求C、A之间的距离.
相关试题