【题目】下列计算正确的是( )
A.(﹣1)﹣3=1
B.(﹣4)0=1
C.(﹣2)2×(﹣2)﹣3=26
D.2a﹣4= ![]()
参考答案:
【答案】B
【解析】解:A、(﹣1)﹣3=﹣1,故原题计算错误;
B、(﹣4)0=1,故原题计算正确;
C、(﹣2)2×(﹣2)﹣3=﹣
,故原题计算错误;
D、2a﹣4=
,故原题计算错误;
故选:B.
【考点精析】根据题目的已知条件,利用零指数幂法则和整数指数幂的运算性质的相关知识可以得到问题的答案,需要掌握零次幂和负整数指数幂的意义: a0=1(a≠0);a-p=1/ap(a≠0,p为正整数);aman=am+n(m、n是正整数);(am)n=amn(m、n是正整数);(ab)n=anbn(n是正整数);am/an=am-n(a不等于0,m、n为正整数);(a/b)n=an/bn(n为正整数).
-
科目: 来源: 题型:
查看答案和解析>>【题目】把直线y=2x﹣1向左平移1个单位,平移后直线的关系式为( )
A.y=2x﹣2
B.y=2x+1
C.y=2x
D.y=2x+2 -
科目: 来源: 题型:
查看答案和解析>>【题目】我们定义:如图1,在△ABC看,把AB点绕点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.
特例感知:
(1)在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.
①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD= BC;
②如图3,当∠BAC=90°,BC=8时,则AD长为 .
猜想论证:
(2)在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.
拓展应用
(3)如图4,在四边形ABCD,∠C=90°,∠D=150°,BC=12,CD=2
,DA=6.在四边形内部是否存在点P,使△PDC是△PAB的“旋补三角形”?若存在,给予证明,并求△PAB的“旋补中线”长;若不存在,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】端午节那天,小贤回家看到桌上有一盘粽子,其中有豆沙粽、肉粽各1个,蜜枣粽2个,这些粽子除馅外无其他差别.
(1)小贤随机地从盘中取出一个粽子,取出的是肉粽的概率是多少?
(2)小贤随机地从盘中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小贤取出的两个都是蜜枣粽的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A(2,m),B(n,﹣5),根据下列条件求m,n的值.
(1)A,B两点关于y轴对称;
(2)AB∥y轴.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=k1x(x≥0)与双曲线y=
(x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A′PB′.过点A′作A′C∥y轴交双曲线于点C,连接CP.(1)求k1与k2的值;
(2)求直线PC的解析式;
(3)直接写出线段AB扫过的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线C1:y=ax2﹣4ax﹣5(a>0).
(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;
(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;
②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;
(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.

相关试题