【题目】如图,在△ABC中,AB=BC=4,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为 .
![]()
参考答案:
【答案】2或2
或2![]()
【解析】
本题根据题意分三种情况进行分类求解,结合三角函数,等边三角形的性质即可解题.
试题当∠APB=90°时(如图1),
∵AO=BO,
∴PO=BO,
∵∠AOC=60°,
∴∠BOP=60°,
∴△BOP为等边三角形,
∵AB=BC=4,
∴
;
当∠ABP=90°时(如图2),
∵∠AOC=∠BOP=60°,
∴∠BPO=30°,
∴
,
在直角三角形ABP中,
,
如图3,∵AO=BO,∠APB=90°,
∴PO=AO,
∵∠AOC=60°,
∴△AOP为等边三角形,
∴AP=AO=2,
故答案为
或
或2.
![]()
![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】在等腰△ABC中,AB=AC,将线段BA绕点B顺时针旋转到BD,使BD⊥AC于H,连结AD并延长交BC的延长线于点P.
(1)依题意补全图形;
(2)若∠BAC=2α,求∠BDA的大小(用含α的式子表示);
(3)小明作了点D关于直线BC的对称点点E,从而用等式表示线段DP与BC之间的数量关系.请你用小明的思路补全图形并证明线段DP与BC之间的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】人在运动时每分钟心跳的次数通常和人的年龄有关,如果用
表示一个人的年龄,用
表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么
.
正常情况下,在运动时一个
岁的人所能承受的每分钟心跳的最高次数是多少?
一个
岁的人运动时
秒心跳的次数为
,请问他有危险吗?为什么? -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,点P的横坐标为x,纵坐标为2x,满足这样条件的点称为“关系点”.
(1)在点A(1,2)、B(2,1)、M(
,1)、N(1,
)中,是“关系点”的为 ;(2)⊙O的半径为1,若在⊙O上存在“关系点”P,求点P坐标;
(3)点C的坐标为(3,0),若在⊙C上有且只有一个“关系点”P,且“关系点”P的横坐标满足-2≤x≤2.请直接写出⊙C的半径r的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点I是△ABC的内心,AI的延长线交△ABC的外接圆⊙O于点D.

(1)求证:DB=DC=DI;
(2)若AB是⊙O的直径,OI⊥AD,求tan
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元,已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次采购的数量是第一次采购数量的两倍.
(1)试问去年每吨大蒜的平均价格是多少元?
(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.为出口需要,所有采购的大蒜必须在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半.为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s的速度向A点运动.设运动时间为x(s).

(1)当x为何值时,PQ∥BC;
(2)当△APQ与△CQB相似时,AP的长为________.;
(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.
相关试题