【题目】如图,在正方形网格中,每个小正方形的边长为1,格点△ABC(顶点在网格线的交点上)的顶点A、C的坐标分别为A(﹣3,4)C(0,2)
(1)请在网格所在的平面内建立平面直角坐标系,并写出点B的坐标;
(2)画出△ABC关于原点对称的图形△A1B1C1;
(3)求△ABC的面积;
(4)在x轴上存在一点P,使PA+PB的值最小,请直接写出点P的坐标.
![]()
参考答案:
【答案】(1)坐标系详见解析,点B的坐标(﹣2,0);(2)详见解析;(3)5;(4)点P的坐标(﹣2,0).
【解析】
(1)根据A、C点坐标,作出的平面直角坐标系即可,根据作出的平面直角坐标系写出B点的坐标即可;
(2)根据原点对称的特点画出图形即可;
(3)利用矩形面积减去周围三角形面积得出即可;
(4)根据轴对称的性质解答即可.
解:(1)如图所示:
![]()
点B的坐标(-2,0);
(2)如图所示,△A1B1C1即为所求;
(3)△ABC的面积
=5;
(4)点P的坐标(-2,0).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从乒乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:

(1)这次被调查的共有多少名同学?并补全条形统计图.
(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞架所成的角∠BAC,当伞收紧时,结点D与点M重合,且点A、E、D在同一条直线上,已知部分伞架的长度如下:单位:cm
伞架
DE
DF
AE
AF
AB
AC
长度
36
36
36
36
86
86

(1)求AM的长.
(2)当∠BAC=104°时,求AD的长(精确到1cm). 备用数据:sin52°=0.788,cos52°=0.6157,tan52°=1.2799. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一张圆心角为45°的扇形纸板剪得一个边长为1的正方形,则扇形纸板的面积是cm2(结果保留π)

-
科目: 来源: 题型:
查看答案和解析>>【题目】若一个矩形的一边是另一边的两倍,则称这个矩形为方形,如图1,矩形ABCD中,BC=2AB,则称ABCD为方形.

(1)设a,b是方形的一组邻边长,写出a,b的值(一组即可).
(2)在△ABC中,将AB,AC分别五等分,连结两边对应的等分点,以这些连结线为一边作矩形,使这些矩形的边B1C1 , B2C2 , B3C3 , B4C4的对边分别在B2C2 , B3C3 , B4C4 , BC上,如图2所示.
①若BC=25,BC边上的高为20,判断以B1C1为一边的矩形是不是方形?为什么?
②若以B3C3为一边的矩形为方形,求BC与BC边上的高之比. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.

(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.
(2)如图2,AC:AB=1:
,EF⊥CE,求EF:EG的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,点D为顶点.

(1)求点B及点D的坐标.
(2)连结BD,CD,抛物线的对称轴与x轴交于点E.
①若线段BD上一点P,使∠DCP=∠BDE,求点P的坐标.
②若抛物线上一点M,作MN⊥CD,交直线CD于点N,使∠CMN=∠BDE,求点M的坐标.
相关试题