【题目】如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴,点C在y轴的正半轴上,点F再AB上,点B,E在反比例函数y=
的图象上,OA=2,OC=6,则正方形ADEF的边长为______.
![]()
参考答案:
【答案】
﹣1
【解析】
先确定B点坐标(2,6),根据反比例函数图象上点的坐标特征得到k=12,则反比例函数解析式为y=
,设AD=t,则OD=2+t,所以E点坐标为(2+t,t),再根据反比例函数图象上点的坐标特征得(2+t)t=12,利用因式分解法可求出t的值.
∵OA=2,OC=6,
∴B点坐标为(2,6),
∴k=2×6=12,
∴反比例函数解析式为y=
,
设AD=t,则OD=2+t,
∴E点坐标为(2+t,t),
∴(2+t)t=12,
整理为t2+2t12=0,
解得t1=1+
,t2=-1-
,
∴正方形ADEF的边长为
﹣1.
故答案为:
﹣1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图22,将—矩形OABC放在直角坐际系中,O为坐标原点.点A在x轴正半轴上.点E是边AB上的—个动点(不与点A、N重合),过点E的反比例函数
的图象与边BC交于点F。【1】若△OAE、△OCF的而积分别为S1、S2.且S1+S2=2,求
的值:【2】若OA=2.0C=4.问当点E运动到什么位置时,四边形OAEF的面积最大.其最大值为多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,两个30°的角BAC与角MON,顶点A在射线ON上某处,现保持角MON不动,将角BAC绕点A以每秒15°的速度顺时针旋转,边AB、AC分别与边OM交于点P、Q,当AC∥OM时,交点Q消失旋转结束。设运动时间为t秒(t>0).

(1)当t=2秒时,OP:PQ= ;
(2)在运动的过程中,△APQ能否成为等腰三角形?若能,请利用备用图,直接写出此时的运动时间;
(3)在(2)中判断△OAQ的形状,并选择其中的一个说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列等式:
(a﹣b)(a+b)=a2﹣b2
(a﹣b)(a2+ab+b2)=a3﹣b3
(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…
利用你的发现的规律解决下列问题
(1)(a﹣b)(a4+a3b+a2b2+ab3+b4)= (直接填空);
(2)(a﹣b)(an﹣1+an﹣2b+an﹣3b2…+abn﹣2+bn﹣1)= (直接填空);
(3)利用(2)中得出的结论求62019+62018+…+62+6+1的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,点C是OA的中点,过点C作CD⊥OA于C交一次函数图象于点D,P是OB上一动点,则PC+PD的最小值为( )

A.4B.
C.2
D.2
+2 -
科目: 来源: 题型:
查看答案和解析>>【题目】小明同学在数学实践课中测量路灯的高度.如图,已知他的目高
为1.5米,他先站在
处看路灯顶端
的仰角为
,向前走3米后站在
处,此时看灯顶端
的仰角为
(
),则灯顶端
到地面的距离约为( )
A.3.2米B.4.1米C.4.7米D.5.4米
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,反比例函数y=kx-1(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k=_______.

相关试题