【题目】已知锐角△ABC中,边BC长为12,高AD长为8.
(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K. ![]()
①求
的值;
②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;
(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.
参考答案:
【答案】
(1)解:①∵EF∥BC,
∴
,
∴
=
,
即
的值是
.
②∵EH=x,
∴KD=EH=x,AK=8﹣x,
∵
=
,
∴EF=
,
∴S=EHEF=
x(8﹣x)=﹣
+24,
∴当x=4时,S的最大值是24.
(2)解:设正方形的边长为a,
① 当正方形PQMN的两个顶点在BC边上时,
,
解得a=
.
②当正方形PQMN的两个顶点在AB或AC边上时,
∵AB=AC,AD⊥BC,
∴BD=CD=12÷2=6,
∴AB=AC=
,
∴AB或AC边上的高等于:
ADBC÷AB
=8×12÷10
= ![]()
∴
,
解得a=
.
综上,可得
正方形PQMN的边长是
或 ![]()
【解析】(1)①根据EF∥BC,可得
,所以
,据此求出
的值是多少即可.②首先根据EH=x,求出AK=8﹣x,再根据
=
,求出EF的值;然后根据矩形的面积公式,求出S与x的函数关系式,利用配方法,求出S的最大值是多少即可.(2)根据题意,设正方形的边长为a,分两种情况:①当正方形PQMN的两个顶点在BC边上时;②当正方形PQMN的两个顶点在AB或AC边上时;分类讨论,求出正方形PQMN的边长各是多少即可.
【考点精析】通过灵活运用二次函数的最值和矩形的性质,掌握如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;矩形的四个角都是直角,矩形的对角线相等即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:二次函数y=ax2+bx+c(a≠0)中的x和y满足下表:
x
…
0
1
2
3
4
5
…
y
…
3
0
﹣1
0
m
8
…
(1)可求得m的值为;
(2)求出这个二次函数的解析式;
(3)当y>3时,x的取值范围为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在⊙O中,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.

(1)求证:∠PCA=∠B;
(2)填空:已知∠P=40°,AB=12cm,点Q在
上,从点A开始以πcm/s的速度逆时针运动到点C停止,设运动时间为ts. ①当t=时,以点A、Q、B、C为顶点的四边形面积最大;
②当t=时,四边形AQBC是矩形. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°,将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交边AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC处时,∠MPN的旋转随即停止.

(1)特殊情形:如图②,发现当PM过点A时,PN也恰巧过点D,此时,△ABP△PCD(填“≌”或“~”);
(2)类比探究:如图③,在旋转过程中,
的值是否为定值?若是,请求出该定值;若不是,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣
x2+bx+c过点A(4,0),B(﹣4,﹣4). 
(1)求抛物线的解析式;
(2)若点P是线段AB上的一个动点(不与A、B重合),过P作y轴的平行线,分别交抛物线及x轴于C、D两点.请问是否存在这样的点P,使PD=2CD?若存在,请求出点P的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0)、B两点,交y轴于点C(0,5),且过点D(1,8),M为其顶点.

(1)求抛物线的解析式;
(2)求△MCB的面积;
(3)在抛物线上是否存在点P,使△PAB的面积等于△MCB的面积?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=15,AC=12,BC=9,经过点C且与边AB相切的动圆与CB、CA分别相交于点E、F,则线段EF长度的最小值是( )

A.
B.
C.
D.8
相关试题