【题目】如图,抛物线y1=a(x+2)2﹣3与y2=
(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:
①无论x取何值,y2的值总是正数;
②a=1;
③当x=0时,y2﹣y1=4;
④2AB=3AC;
其中正确结论是( )
![]()
A. ①② B. ②③ C. ③④ D. ①④
参考答案:
【答案】D
【解析】试题解析::①∵抛物线y2=
(x-3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本结论正确;
②把A(1,3)代入,抛物线y1=a(x+2)2-3得,3=a(1+2)2-3,解得a=
,故本结论错误;
③由两函数图象可知,抛物线y1=a(x+2)2-3解析式为y1=
(x+2)2-3,当x=0时,y1=
(0+2)2-3=-
,y2=
(0-3)2+1=
,故y2-y1=
+
=
,故本结论错误;
④∵物线y1=a(x+2)2-3与y2=
(x-3)2+1交于点A(1,3),
∴y1的对称轴为x=-2,y2的对称轴为x=3,
∴B(-5,3),C(5,3)
∴AB=6,AC=4,
∴2AB=3AC,故本结论正确.
故选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.

(1)求证:EB=GD且EB⊥GD;
(2)若AB=2,AG=
,求
的长;(3)如图2,正方形AEFG绕点A逆时针旋转
连结DE,BG,
与
的面积之差是否会发生变化?若不变,请求出
与
的面积之差;若变化,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】完成下面的推理.
如图,BE平分∠ABD,DE平分∠BDC,且∠α+∠β=90°,试说明:AB∥CD.

完成推理过程:
∵BE平分∠ABD(已知),
∴∠ABD=2∠α(__________).
∵DE平分∠BDC(已知),
∴∠BDC=2∠β (__________).
∴∠ABD+∠BDC=2∠α+2∠β=2(∠α+∠β)( __________).
∵∠α+∠β=90°(已知),
∴∠ABD+∠BDC=180°(__________).
∴AB∥CD(____________________).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(
,y1),B(2,y2)为反比例函数y=
图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知
的边
平行于
轴,
点
的坐标为
,点
的坐标为
,点
在第四象限,点
是
边上的一个动点.
(1)若点
在边
上,
求点
的坐标;(2)若点
在边
或
上,点
是
与
轴的交点如图2,过点
作
轴的平行线
过点
作
轴的平行线
它们相交于点
,将
沿直线
翻折,当点
的对应点落在坐标轴上时,求点
的坐标.(直接写出答案) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
中,
,
.点
是射线
上一动点,过点
作射线
的垂线,垂足为点
,点
为
的中点,连结
,则
的最小值为________.
相关试题