【题目】如图,正方形OABC的边长为3,点A、C分别在x轴,y轴的正半轴上,点D(1,0)在OA上,P是OB上一动点,则PA+PD的最小值为_____.
![]()
参考答案:
【答案】
.
【解析】
过D点作关于OB的对称点D′,连接D′A交OB于点P,由两点之间线段最短可知D′A即为PA+PD的最小值,
由正方形的性质可求出D′点的坐标,再根据OA=3可求出A点的坐标,利用两点间的距离公式即可求出D′A的值.
解:过D点作关于OB的对称点D′,连接D′A交OB于点P,由两点之间线段最短可知D′A即为PA+PD的最小值,
∵D(1,0),四边形OABC是正方形,
∴D′点的坐标为(0,1),A点坐标为(3,0),
∴D′A=
=
,即PA+PD的最小值为
.
故答案为:![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】完成下列推理过程
已知:∠C+∠CBD=180°,∠ABD=85°,∠2=60°,求∠A的度数.

解:∵∠C+∠CBD=180°(已知)
∴DB∥CE( )
∴∠1= ( )
∵∠2=∠3( )
∴∠1=∠2=60° ( )
又∵ ∠ABD=85°(已知)
∴∠A=180°-∠ABD-∠1= (三角形三内角和为180°)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O为圆心,r为半径的圆与线段AB有交点,则r的取值范围是( )

A.r≥1
B.1≤r≤
C.1≤r≤
D.1≤r≤4 -
科目: 来源: 题型:
查看答案和解析>>【题目】把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是( )

A. 6
B. 6C. 3
D. 3+3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度).

-
科目: 来源: 题型:
查看答案和解析>>【题目】下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又原路返回,顺路到文具店去买笔,然后散步回家.其中x表示时间,y表示张强离家的距离.根据图象回答:
(1)体育场离张强家的多远?张强从家到体育场用了多长时间?
(2)体育场离文具店多远?
(3)张强在文具店逗留了多久?
(4)计算张强从文具店回家的平均速度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AC=BC=5,AB=5
,三角形顶点在相互平行的三条直线L1,L2,L3上,且L2,L3之间的距离为3,则L1,L3之间的距离是_____.
相关试题