【题目】现有一个种植总面积为540m2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:
占地面积(m/垄) | 产量(千克/垄) | 利润(元/千克) | |
西红柿 | 30 | 160 | 1.1 |
草莓 | 15 | 50 | 1.6 |
(1)若设草莓共种植了
垄,通过计算说明共有几种种植方案?分别是哪几种?
(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?
参考答案:
【答案】解:(1)根据题意西红柿种了(24-
)垄
15
+30(24-
)≤540 解得
≥12
∵
≤14,且
是正整数 ∴
=12,13,14
共有三种种植方案,分别是:
方案一:草莓种植12垄,西红柿种植12垄
方案二:草莓种植13垄,西红柿种植11垄
方案三:草莓种植14垄,西红柿种植10垄
(2)解法一:方案一获得的利润:12×50×1.6+12×160×1.1=3072(元)
方案二获得的利润:13×50×1.6+11×160×1.1=2976(元)
方案三获得的利润:14×50×1.6+10×160×1.1=2880(元)
由计算知,种植西红柿和草莓各12垄,获得的利润最大,
最大利润是3072元
解法二:若草莓种了
垄,设种植草莓和西红柿共可获得利润
元,则
![]()
∵
-96<0 ∴
随
的增大而减小
又∵12≤
≤14,且
是正整数
∴当
=12时,
=3072(元)
【解析】
(1)列出一元一次不等式组,求出草莓种植垄数的取值范围,就可以找出方案;
(2)列出一次函数,代入方案中的数据,进行比较,可以找出答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平行四边形 ABCD 的对角线 AC、BD 交于 O 点,AE∥BD,∠AED=∠AOD,连接 OE.

(1)求证:AE=OB;
(2)求证:四边形 CDEO 是平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=ax2+bx﹣8(a≠0)的对称轴是直线x=1,
(1)求证:2a+b=0;
(2)若关于x的方程ax2+bx﹣8=0,有一个根为4,求方程的另一个根. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(-1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(-2,2),第四次向右跳动5个单位至点A4(3,2),………,依此规律跳动下去,点A第100次跳动至点A100的坐标是________;

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,若△ABC和△ADE为等边三角形,M,N分别是BE,CD的中点,

(1)求证:△AMN是等边三角形.
(2)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②中的一种).设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)

(1)在图①中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?
(2)在图②中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积S最大?最大面积是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】某店准备购进 A,B 两种口罩,A 种口罩毎盒的进价比 B 种口罩每盒的进价多 10 元,用 2000 元购进 A种口罩和用 1500 元购进 B 种口罩的数量相同.
(1)A 种口罩每盒的进价和 B 种口罩每盒的进价各是多少元?
(2)商店计划用不超过 1770 元的资金购进 A,B 两种口罩共 50 盒,其中 A 种口罩的数量应多于 B 种口罩数量,该商店有几种进货方案?
相关试题