【题目】如图,平行四边形 ABCD 的对角线 AC、BD 交于 O 点,AE∥BD,∠AED=∠AOD,连接 OE.
![]()
(1)求证:AE=OB;
(2)求证:四边形 CDEO 是平行四边形.
参考答案:
【答案】(1)见解析; (2)见解析
【解析】
(1)首先证明四边形DEAO是平行四边形,推出AE=OD,再证明OB=OD即可;
(2)只要证明EO∥CD,EO=CD即可.
(1)∵AE∥BD,
∴∠AED+∠EDO=180°,
∵∠AED=∠AOD,
∴∠AOD +∠EDO =180°,
∴AO∥DE,
∴四边形DEAO是平行四边形,
∴AE=OD,
∵四边形ABCD是平行四边形,
∴OB=OD,
∴AE=OB;
(2)∵AE=OB,且AE∥OB,
∴四边形AEOB是平行四边形,
∴AB=OE,AB∥OE,
∵AB=CD,AB∥CD,
∴OE = CD,OE∥CD,
∴四边形CDEO是平行四边形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
ABCD 中,∠BDC=45°,BE⊥CD 于 E,DG⊥BC 于 G,BE、DG 相交于 H,DG、AB 的延长线 相交于 F,下面结论:①∠A=∠DHE;②△DCG≌△BCE;③AD=DH;④DH=HF其中正确的结论有________(只填正确结论的序号). 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOB=120°,点C为平面内一点,作射线OC,射线OD平分∠BOC,射线OE平分∠AOD.
(1)若点C为∠AOB内部一点且∠AOC=30°,依题意补全图形,并求出∠EOC的度数;
(2)若点C为∠AOB内部一点,∠AOC=α(0<α<120°)直接用含α的代数式表示∠EOC的度数;
(3)若∠EOC=10°,请你直接写出所有符合条件的∠AOC度数(0<∠AOC<180°)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=ax2+bx﹣8(a≠0)的对称轴是直线x=1,
(1)求证:2a+b=0;
(2)若关于x的方程ax2+bx﹣8=0,有一个根为4,求方程的另一个根. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(-1,1),第二次跳动至点A2(2,1),第三次跳动至点A3(-2,2),第四次向右跳动5个单位至点A4(3,2),………,依此规律跳动下去,点A第100次跳动至点A100的坐标是________;

-
科目: 来源: 题型:
查看答案和解析>>【题目】现有一个种植总面积为540m2的矩形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:
占地面积(m/垄)
产量(千克/垄)
利润(元/千克)
西红柿
30
160
1.1
草莓
15
50
1.6
(1)若设草莓共种植了
垄,通过计算说明共有几种种植方案?分别是哪几种?(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?
相关试题