【题目】如图,AB为⊙O的直径,AC交⊙O于E点,BC交⊙O于D点,CD=BD,∠C=70°.现给出以下四种结论:①∠A=45°;②AC=AB;③AE=BE;④CEAB=2BD2 . 其中正确结论的序号是( ) ![]()
A.①②
B.②③
C.②④
D.③④
参考答案:
【答案】C
【解析】解:连接AD,
∵AB是⊙O的直径,
∴∠ADB=90°.
∵CD=BD,
∴AD是BC的垂直平分线,
∴AC=AB,故②正确;
∵AC=AB,
∴∠ABC=∠C=70°,
∴∠BAC=40°,故①错误;
连接BE,DE,
∵AB为⊙O的直径,
∴∠AEB=90°,
∵∠BAC=40°,
∴∠ABE=50°,
∴∠BAC≠∠ABE,
∴AE≠BE,故③错误;
∵四边形ABDE是圆内接四边形,
∴∠CDE=∠CAB,
∴△CDE∽△CAB,
∴
=
,即
,
∴CEAB=2BD2 , 故④正确.
故选C.![]()
【考点精析】通过灵活运用相似三角形的判定与性质,掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是( )

A.②④
B.①③
C.②③
D.①④ -
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).
(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:
.(2)当a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.请在坐标轴上找一点C,使△ABC为等腰三角形.
①写出一个满足条件的在x轴上的点的坐标: ;
②写出一个满足条件的在y轴上的点的坐标: ;
③满足条件的在y轴上的点共有 个.

-
科目: 来源: 题型:
查看答案和解析>>【题目】科技小组进行了机器人行走性能试验,如图1,甲,乙两机器人分别从M,N两点同时同向出发,经过7分钟,甲,乙同时到达P点,乙机器人始终以60米/分的速度行走,图2是甲,乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图形,回答下列问题:
(1)M,N两点之间的距离是 米
(2)求出M,P两点之间的距离(写出解答过程);
(3)求甲前2分钟的速度(写出解答过程);
(4)若前3分钟甲的速度不变,图2中,点F的坐标为 ;
(5)若线段FG∥x轴,则此段时间内甲的速度为 米/分;

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
,添加以下条件,不能判定
的是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算与解方程
(1)计算:
tan60°+|﹣3sin30°|﹣cos245°.
(2)解方程:x2+4x+1=0. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y1=kx+b的图象与反比例函数y2=
(x>0)的图象交于A(1,6),B(a,2)两点.
(1)求一次函数与反比例函数的解析式;
(2)直接写出y1≤y2时x的取值范围.
相关试题