【题目】如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是( )![]()
A.②④
B.①③
C.②③
D.①④
参考答案:
【答案】B
【解析】解:①图象与x轴有两个交点,则方程有两个不相等的实数根,b2﹣4ac>0,b2>4ac,正确;
②因为开口向下,故a<0,有﹣
>0,则b>0,又c>0,故bc>0,错误;
③由对称轴x=﹣
=1,得2a+b=0,正确;
④当x=1时,a+b+c>0,错误;
故①③正确.
故选:B.
将函数图象补全,再进行分析.主要是从抛物线与x轴(y轴)的交点,开口方向,对称轴及x=±1等方面进行判断.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形网格中的△ABC,若小方格边长为1,格点△ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别为(﹣1,1),(0,﹣2),请你根据所学的知识.

(1)在如图所示的网格平面内作出平面直角坐标系;
(2)作出△ABC关于y轴对称的三角形A1B1C1;
(3)判断△ABC的形状,并求出△ABC的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是( )

A.(0,0)
B.(1,0)
C.(1,﹣1)
D.(2.5,0.5) -
科目: 来源: 题型:
查看答案和解析>>【题目】A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中
表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是 (填
或
);(2)甲的速度是 km/h,乙的速度是 km/h;
(3)甲出发多少小时两人恰好相距5km?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).
(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:
.(2)当a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.请在坐标轴上找一点C,使△ABC为等腰三角形.
①写出一个满足条件的在x轴上的点的坐标: ;
②写出一个满足条件的在y轴上的点的坐标: ;
③满足条件的在y轴上的点共有 个.

-
科目: 来源: 题型:
查看答案和解析>>【题目】科技小组进行了机器人行走性能试验,如图1,甲,乙两机器人分别从M,N两点同时同向出发,经过7分钟,甲,乙同时到达P点,乙机器人始终以60米/分的速度行走,图2是甲,乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图形,回答下列问题:
(1)M,N两点之间的距离是 米
(2)求出M,P两点之间的距离(写出解答过程);
(3)求甲前2分钟的速度(写出解答过程);
(4)若前3分钟甲的速度不变,图2中,点F的坐标为 ;
(5)若线段FG∥x轴,则此段时间内甲的速度为 米/分;

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,AC交⊙O于E点,BC交⊙O于D点,CD=BD,∠C=70°.现给出以下四种结论:①∠A=45°;②AC=AB;③AE=BE;④CEAB=2BD2 . 其中正确结论的序号是( )

A.①②
B.②③
C.②④
D.③④
相关试题