【题目】2020年冬奥会将在延庆召开,延庆区某中学响应区团委的号召,组织学生参加“我是奥运小志愿者”活动,志愿者可以到“八达岭长城”、“世葡园”、“龙庆峡”、“百里画廊”四个景区之一参加活动.晓明对“八达岭长城”和“百里画廊”最感兴趣,他将四个景区编号为A、B、C、D,并写在四张卡片上(除编号和内容不同之外,其余完全相同),他将卡片背面朝上,洗匀放好,从中随机抽取两张,请用列表或是画树状图的方法,求抽到的两张卡片恰好是“八达岭长城”,“百里画廊”的概率.(说明:这四张卡片分别用它的编号A、B、C、D表示) ![]()
参考答案:
【答案】解:列表得:
A(八达岭) | B(市葡园) | C(龙庆峡) | D(百里画廊) | |
A(八达岭) | AB | AC | AD | |
B(市葡园) | BA | BC | BD | |
C(龙庆峡) | CA | CB | CD | |
D(百里画廊) | DA | DB | DC |
∵所有可能情况共12种,其中抽到的两张卡片恰好是“八达岭长城”,“百里画廊”有1种,
∴抽到的两张卡片恰好是“八达岭长城”,“百里画廊”的概率P=
=
.
【解析】依据题意用列表法或画树状图法分析所有等可能的出现结果,再找到抽到的两张卡片恰好是“八达岭长城”,“百里画廊”的情况数,即可求出其概率.
【考点精析】本题主要考查了列表法与树状图法的相关知识点,需要掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知∠XOY=90°,点A,B分别在射线OX,OY上移动.BE是
∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C,则∠ACB的
大小是否变化?如果保持不变,请说明原因;如果随点A,B的移动而发生变化,求
出变化范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A为某封闭图形边界的一定点,动点P从点A出发,沿其边界顺时针匀速运动一周,设点P的时间为x,线段AP的长为y,表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是( ).

A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=(m-3)x+5的函数值y随着x的增大而减小,则m的取值范围_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,直线y=kx+b(k≠0)与双曲线y=
的一个交点为P(2,m),与x轴、y轴分别交于点A,B.
(1)求m的值;
(2)若S△AOP=2S△AOB , 求k的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】从共享单车,共享汽车等共享出行到共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速的普及,根据国家信息中心发布的中国分享经济发展报告2017显示,参与共享经济活动超6 亿人,比上一年增加约1亿人.
(1)为获得北京市市民参与共享经济活动信息,下列调查方式中比较合理的是( );
A.对某学校的全体同学进行问卷调查
B.对某小区的住户进行问卷调查
C.在全市里的不同区县,选取部分市民进行问卷调查
(2)调查小组随机调查了延庆区市民骑共享单车情况,某社区年龄在12~36岁的人有1000人,从中随机抽取了100人,统计了他们骑共享单车的人数,并绘制了如下不完整的统计图表.如图所示.
骑共享单车的人数统计表年龄段(岁)
频数
频率
12≤x<16
2
0.02
16≤x<20
3
0.03
20≤x<24
15
a
24≤x<28
25
0.25
28≤x<32
b
0.30
32≤x<36
25
0.25
根据以上信息解答下列问题:
①统计表中的a=;b=;
②补全频数分布直方图;
③试估计这个社区年龄在20岁到32岁(含20岁,不含32岁)骑共享单车的人有人? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE⊥AC于点E, 延长DE到点F,使得EF=DE,连接AF,CF.

(1)根据题意,补全图形;
(2)求证:四边形ADCF是菱形;
(3)若AB=8,∠BAC=30°,求菱形ADCF的面积.
相关试题