【题目】如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC.
(1)若∠CBD=39°,求∠BAD的度数;
(2)求证:∠1=∠2.
![]()
参考答案:
【答案】(1)78°(2)证明见解析
【解析】试题分析:(1)根据等腰三角形的性质由BC=DC得到∠CBD=∠CDB=39°,再根据圆周角定理得∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,所以∠BAD=∠BAC+∠CAD=78°;
(2)根据等腰三角形的性质由EC=BC得∠CEB=∠CBE,再利用三角形外角性质得∠CEB=∠2+∠BAE,则∠2+∠BAE=∠1+∠CBD,加上∠BAE=∠CBD,所以∠1=∠2.
(1)解:∵BC=DC,
∴∠CBD=∠CDB=39°,
∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°,
∴∠BAD=∠BAC+∠CAD=39°+39°=78°;
(2)证明:∵EC=BC,
∴∠CEB=∠CBE,
而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,
∴∠2+∠BAE=∠1+∠CBD,
∵∠BAE=∠BDC=∠CBD,
∴∠1=∠2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD中,
,点E在AD上,且
,连接EC,将矩形ABCD沿直线BE翻折,点A恰好落在EC上的点A'处,则
____________cm.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD 的边长为4,E 为AB 上一点,且AE=3 ,F 为BC 边上的一个动点,连接EF ,以EF 为边向左侧作等腰直角三角形FEG ,EG=EF,∠GEF=90°,连接AG ,则AG 的最小值为________________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校七(1)班体育委员统计了全班同学60秒跳绳的次数,并绘制出如下频数分布表和频数分布直方图:
次数
80≤x<100
100≤x<120
120≤x<140
140≤x<160
160≤x<180
180≤x<200
频数
a
4
12
16
8
3
结合图表完成下列问题:
(1)a= ,全班人数是______;
(2)补全频数分布直方图;
(3)若跳绳次数不少于140的学生成绩为优秀,则优秀学生人数占全班总人数的百分之几?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD内接于⊙O,AC是⊙O的直径,过点B作BE⊥AD,垂足为点E,AB平分∠CAE.
(1)判断BE与⊙O的位置关系,并说明理由;
(2)若∠ACB=30°,⊙O的半径为4,请求出图中阴影部分的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,点A(m,n)在第一象限内,m,n均为整数,且满足
.(1)求点A的坐标;
(2)将线段OA向下平移a(a>0)个单位后得到线段
,过点
作
轴于点B,若
,求a的值;(3)过点A向x轴作垂线,垂足为点C,点M从O出发,沿y轴的正半轴以每秒2个单位长度的速度运动,点N从点C出发,以每秒3个单位长度的速度向x轴负方向运动,点M与点N同时出发,设点M的运动时间为t秒,当
时,判断四边形AMON的面积
的值是否变化?若不变,求出其值;若变化,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点A(2,1),B(﹣1,1),C(﹣1,﹣3),D(2,﹣3),点P从点A出发,以每秒1个单位长度的速度沿A﹣B﹣C﹣D﹣A…的规律在图边形ABCD的边上循环运动,则第2019秒时点P的坐标为( )

A. (1,1)B. (0,1)C. (﹣1,1)D. (2,﹣1)
相关试题