【题目】如图①,已知AB⊥BD,ED⊥BD,AB=CD,BC=DE
![]()
(1)求证:△ABC≌△CDE
(2)试判断AC与CE的位置关系,并说明理由.
(3)若将CD沿CB方向平移得到图②的情形,其余条件不变,此时第(2)问中AC与CE的位置关系还成立吗?请说明理由。
参考答案:
【答案】(1)见解析;(2)AC⊥CE ,理由见解析;(3)成立,理由见解析
【解析】
(1)利用SAS证明△ABC≌△CDE;
(2)根据△ABC≌△CDE,即可推出AC⊥CE;
(2)结论成立,根据已知推出△ABC1≌△C2DE,即可推出结论.
(1)∵AB⊥BD,ED⊥BD
∴∠ABC=∠CDE=90°
在△ABC与△CDE中
∵
∴△ABC≌△CDE(SAS)
(2)AC⊥CE ,理由如下:
∵由(1)得:△ABC≌△CDE
∴∠A=∠DCE
∵AB⊥BD,ED⊥BD
∴∠B=∠D=90°
∴∠A+∠ACB=90°
∴∠DCE+∠ACB=90°
∴∠ACE=90°
∴AC⊥CE
(3)成立,理由如下:
∵AB⊥BD,ED⊥BD
∴∠B=∠D=90°
在△ABC1与△C2DE中
∵
∴△ABC1≌△C2DE
∴∠A=∠EC2D
又∵∠A+∠AC1B=90°
∴∠EC2D+∠AC1B=90°
∴∠AME=90°
∴AC1⊥EC2
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线
经过点A(
,0),B(
,0),且与y轴相交于点C.(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知k为任意实数,随着k的变化,抛物线y=x2﹣2(k﹣1)x+k2﹣3的顶点随之运动,则顶点运动时经过的路径与两条坐标轴围成图形的面积是( )
A. 1 B.
C. 2 D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D在AB上,点E在AC上,BE、CD相交于点O.

(1)三角形的外角等于与它不相邻的两个内角的______,若∠A=45°,∠B=30°,则∠BEC=______;
(2)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度数;
(3)试猜想∠BOC与∠A、∠B、∠C之间的关系,并证明你猜想的正确性。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AO平分∠BAC,AO⊥BC,DE⊥BC,GH⊥BC,垂足分别为O、E、H,且DO∥AC,∠B=43°,则图中角的度数为47°的角的个数是( )

A. 5 B. 6 C. 7 D. 8
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为

A. 15° B. 35° C. 25° D. 45°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB的垂直平分线EF交BC于点E,交AB于点F,D是线段CE的中点,AD⊥BC于点D.若∠B=36°,BC=8,则AB的长为__.

相关试题