【题目】如图,直线AB∥CD,点E在直线AB上,点G在直线CD上,点P在直线AB.CD之间,∠AEP=40°,∠EPG=900
![]()
(1)填空:∠PGC=_________0;
(2)如图, 点F在直线AB上,联结FG,∠EFG的平分线与∠PGD的平分线相交于点Q,当点F在点E的右侧时,如果∠EFG=30°,求∠FQG的度数;
解:过点Q作QM∥CD
因为∠PGC+∠PGD=1800
由(1)得∠PGC=_______0,
所以∠PGD=1800-∠PGC=________0,
因为GQ平分∠PGD,
所以∠PGQ=∠QGD=
∠PGD=_________0
(下面请补充完整求∠FQG度数的解题过程)
(3)点F在直线AB上,联结FG,∠EFG的平分线与∠PGD的平分线相交于点Q.如果∠FQG=2∠BFG,请直接写出∠EFG的度数.
参考答案:
【答案】(1)50;(2)∠FQG的度数为130°;(3)∠FQG的度数为98°.
【解析】
(1)延长GP交AB于点H,由AB∥CD,得∠H=∠PGC,在直角△PEH中由∠H与∠AEP互余,可求出∠H的角度,即为∠PGC的角度.
(2)过点Q作QM∥CD,由(1)结论可求∠PGD,然后由角平分线求∠QGD,再由QM∥CD求出∠MQG,由QM∥AB求出∠FQM,最后由∠FQG=∠MQG+∠FQM得出结果.
(3)设∠EFG=x°,则∠BFG=(180-x)°,由QF平分∠EFG,可得∠EFQ=
x°,由(2)的方法可用x表示出∠FQG,然后根据∠FQG=2∠BFG,建立方程求解.
(1)如图所示,延长GP交AB于点H,因为AB∥CD,所以∠H=∠PGC,在在直角△PEH中,∠H+∠HEP=90°,所以∠H=90°-∠AEP=50°.
![]()
(2)过点Q作QM∥CD
因为∠PGC+∠PGD=180°
由(1)得∠PGC=50°
所以∠PGD=180°-∠PGC=130°
因为GQ平分∠PGD,
所以∠PGQ=∠QGD=
∠PGD=65°
因为QM∥CD
所以∠MQG+∠QGD=180°,则∠MQG=180°-65°=115°
又因为QM∥CD∥AB
所以∠FQM=∠EFQ
而QF平分∠EFG
所以∠EFQ=∠QFG=
∠EFG=15°
所以∠FQG=∠MQG+∠FQM=115°+15°=130°
(3)设∠EFG=x°,则∠BFG=(180-x)°,由QF平分∠EFG,可得∠EFQ=
x°,由(2)可知∠MQG==115°,∠FQM=∠EFQ=
x°,∠FQG=(115+
x)°,由条件∠FQG=2∠BFG可得115+
x=2(180-x),解得x=98,故∠EFG的度数为98°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】问题情境
小明和小丽共同探究一道数学题:
如图①,在△ABC中,点D是边BC的中点,∠BAD=65°,∠DAC=50°,AD=2,
求AC.
探索发现
小明的思路是:延长AD至点E,使DE=AD,构造全等三角形.
小丽的思路是:过点C作CE∥AB,交AD的延长线于点E,构造全等三角形.
选择小明、小丽其中一人的方法解决问题情境中的问题.
类比应用
如图②,在四边形ABCD中,对角线AC、BD相交于点O,点O是BD的中点,

AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,则BC的长为___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.

(1)求抛物线的解析式及顶点D的坐标;
(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;
(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.
(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)
(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某班同学为了解2019年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行整理如下:
月均用水量x(t)
频数(户)
频率

6
0.12

0.24

16
0.32

10
0.20

4

2
0.04

请解答下列问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?
-
科目: 来源: 题型:
查看答案和解析>>【题目】用适当的方法解下列方程
(1)x2﹣4x+1=0 (2)x2+5x+7=0
(3)3x(x﹣1)=2﹣2x (4)x2=x+56
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB,AC的长是这个方程的两个实数根.第三边BC的长为5,
①若△ABC是以BC为斜边的直角三角形,求k的值.
②若△ABC是等腰三角形,求k的值.
相关试题