【题目】问题情境
小明和小丽共同探究一道数学题:
如图①,在△ABC中,点D是边BC的中点,∠BAD=65°,∠DAC=50°,AD=2,
求AC.
探索发现
小明的思路是:延长AD至点E,使DE=AD,构造全等三角形.
小丽的思路是:过点C作CE∥AB,交AD的延长线于点E,构造全等三角形.
选择小明、小丽其中一人的方法解决问题情境中的问题.
类比应用
如图②,在四边形ABCD中,对角线AC、BD相交于点O,点O是BD的中点,
![]()
AB⊥AC.若∠CAD=45°,∠ADC=67.5°,AO=2,则BC的长为___________.
参考答案:
【答案】![]()
【解析】分析:探索发现:按照两个人的做题思路,作图,证明全等即可.
类比应用:参照探索发现的方法,进行求解即可.
详解:探索发现
小明的方法:
延长AD至点E,使DE=AD=2,如图.
![]()
∴AE=AD+DE=2+2=4.
∵点D是边BC的中点,
∴BD=CD.
∵∠ADB=∠EDC,
∴△ABD≌△ECD.
∴∠AEC=∠BAD=65°.
∴∠ACE=180°-∠EAC-∠AEC=180°-50°-65°=65°.
∴∠ACE=∠AEC.
∴AC=AE=4.
∴AC的长为4.
小丽的方法:
过点C作CE∥AB,交AD的延长线于点E,如图.
∴∠DCE =∠ABD,∠AEC=∠BAD=65°.
∴∠ACE=180°-∠EAC-∠AEC=180°-50°-65°=65°.
∴∠ACE=∠AEC.
∴AC=AE.
∵点D是边BC的中点,
∴BD=CD.
∴△ABD≌△ECD.
∴DE=AD=2.
∴AE=AD+DE=2+2=4.
∴AC=AE=4.
∴AC的长为4.
类比应用: 过点D作DE∥AB,交AD于点E,如图.
![]()
∴∠AED =∠DEC =∠BAC=90°,
∴∠ACD=180°-∠CAD-∠ADC=180°-45°-67.5°=67.5°.
∴∠ACD=∠ADC.
∴AC=AD.
∵点O是边BD的中点,
∴BO=OD.
∴△ABO≌△EDO.
∴AO=OE=2.
∴AE=DE=AB=4.
![]()
∴![]()
故答案为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,点D.E分别在边AB,AC上,DE∥BC,按下列要求画图并填空

(1)过点E画直线BC的垂线交直线BC于点F;
(2)点D到直线______的距离等于线段EF的长度
(3)联结BE.CD,EBC的面积______DBC的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知∠AED=∠C,∠1+∠2=180°.请说明∠BEC=∠FGC

解:因为∠AED=∠C(已知),
所以________∥_______(_________________________________ )
得∠1=∠3( _______________________________ )
又∠1+∠2=180°(已知),
得∠3+∠2=180°(___________________________)
所以_______∥_______
所以∠BEC=∠FGC(___________________________)
-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的一元二次方程ax2+bx﹣1=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=1必有一根为( )
A.
B.2020C.2019D.2018 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2﹣2x+c(a≠0)与x轴、y轴分别交于点A,B,C三点,已知点A(﹣2,0),点C(0,﹣8),点D是抛物线的顶点.

(1)求抛物线的解析式及顶点D的坐标;
(2)如图1,抛物线的对称轴与x轴交于点E,第四象限的抛物线上有一点P,将△EBP沿直线EP折叠,使点B的对应点B'落在抛物线的对称轴上,求点P的坐标;
(3)如图2,设BC交抛物线的对称轴于点F,作直线CD,点M是直线CD上的动点,点N是平面内一点,当以点B,F,M,N为顶点的四边形是菱形时,请直接写出点M的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是一块直角三角板,且∠C=90°,∠A=30°,现将圆心为点O的圆形纸片放置在三角板内部.
(1)如图①,当圆形纸片与两直角边AC、BC都相切时,试用直尺与圆规作出射线CO;(不写作法与证明,保留作图痕迹)
(2)如图②,将圆形纸片沿着三角板的内部边缘滚动1周,回到起点位置时停止,若BC=9,圆形纸片的半径为2,求圆心O运动的路径长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB∥CD,点E在直线AB上,点G在直线CD上,点P在直线AB.CD之间,∠AEP=40°,∠EPG=900

(1)填空:∠PGC=_________0;
(2)如图, 点F在直线AB上,联结FG,∠EFG的平分线与∠PGD的平分线相交于点Q,当点F在点E的右侧时,如果∠EFG=30°,求∠FQG的度数;
解:过点Q作QM∥CD
因为∠PGC+∠PGD=1800
由(1)得∠PGC=_______0,
所以∠PGD=1800-∠PGC=________0,
因为GQ平分∠PGD,
所以∠PGQ=∠QGD=
∠PGD=_________0(下面请补充完整求∠FQG度数的解题过程)
(3)点F在直线AB上,联结FG,∠EFG的平分线与∠PGD的平分线相交于点Q.如果∠FQG=2∠BFG,请直接写出∠EFG的度数.
相关试题