【题目】如图,在△ABC中,AB=AC=24厘米,∠ABC=∠ACB,BC=16厘米,点D为AB的中点,如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动,当点Q的运动速度为______厘米/秒时,能够在某一时刻使△BPD与△CQP全等.
![]()
参考答案:
【答案】4或6
【解析】设经过x秒后,使△BPD与△CQP全等,
∵AB=AC=24厘米,点D为AB的中点,
∴BD=12厘米,
∵∠ABC=∠ACB,
∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,
即12=164x或4x=164x,
解得:x=1或x=2,
x=1时,BP=CQ=4,4÷1=4;
x=2时,BD=CQ=12,12÷2=6;
即点Q的运动速度是4或6,
故答案为:4或6
-
科目: 来源: 题型:
查看答案和解析>>【题目】若a﹣b=1,则2﹣2a+2b的值是( )
A.0
B.﹣1
C.﹣2
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图点D是△ABC的两外角平分线的交点,下列说法:

①AD=CD
②D到△ABC的三边所在直线的距离相等
③点D在∠B的平分线上
④若∠B=80°,则∠D=50°
其中正确的说法的序号是_____________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm.矩形ABCD的边AD,AB分别与l1,l2重合,AB=
cm,AD=4cm.若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s).(1)如图①,连接OA,AC,则∠OAC的度数为 °;
(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);
(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm).当d<2时,求t的取值范围.(解答时可以利用备用图画出相关示意图)

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,AB=AC,AD=AE,∠BAC=∠DAE=α,BE与AC、CD分别相交于点N、M.
(1)求证:BE=CD;
(2)求∠BMC的大小.(用α表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列运算中,正确的是( )
A.a2a3=a5B.(a2)3=a5C.a6÷a2=a3D.a5+a5=a10
-
科目: 来源: 题型:
查看答案和解析>>【题目】数据3,6,7,4,x的平均数是5,则这组数据的中位数是( )
A.4
B.4.5
C.5
D.6
相关试题