【题目】(9分)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:
售价(元/件) | 100 | 110 | 120 | 130 | … |
月销量(件) | 200 | 180 | 160 | 140 | … |
已知该运动服的进价为每件60元,设售价为
元.
(1)请用含x的式子表示:①销售该运动服每件的利润是 元;②月销量是 件;(直接写出结果)
(2)设销售该运动服的月利润为
元,那么售价为多少时,当月的利润最大,最大利润是多少?
参考答案:
【答案】(1)
;
;(2)售价为130元时,当月的利润最大,最大利润是9800元.
【解析】
试题(1)根据利润=售价-进价求出利润,运用待定系数法求出月销量;
(2)根据月利润=每件的利润×月销量列出函数关系式,根据二次函数的性质求出最大利润.
试题解析:
(1)①销售该运动服每件的利润是(x﹣60)元;
②设月销量W与x的关系式为w=kx+b,
由题意得,
,
解得,
,
∴W=﹣2x+400;
(2)由题意得,y=(x﹣60)(﹣2x+400)
=﹣2x2+520x﹣24000
=﹣2(x﹣130)2+9800,
∴售价为130元时,当月的利润最大,最大利润是9800元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解:
如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;

(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E;
拓展探究:

(3)如图3,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处.若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB和BC的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,海岸上有 A,B 两个观测点,点 B 在点 A 的正东方,海岛 C 在观测点 A 的正北方, 海岛 D 在观测点 B 的正北方。如果从观测点 A 看海岛 C,D 的视角∠CAD 与从观测点 B 海岛 C,D 的视角∠CBD 相等,那么海岛 C,D 到观测点 A,B 所在海岸的距离 CA,DB 相等,请说明理由。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.
求证:AD+BC=AB.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小刚准备用一段长 44 米的篱笆围成三角形,用于养鸡。已知一条边长 x 米,第二条边是第一条边的 3 倍多 6 米。
(1)若能围成一个等腰三角形,求三边长
(2)若第一边长最短,写出 x 的取值范围 。
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:
小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的纸片进行如下设计:

说明:方案一图形中的圆过点A,B,C,圆心O也是正方形的顶点;
回答问题(直接写出结果):
(1)方案二中,直角三角形纸片的两条直角边长分别为_______cm和_______cm;
(2)小明通过计算,发现方案一中纸片的利用率是________(填准确值),近似值约为38.2%.相比之下,方案二的利用率是________%.小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直接写出方案三的利用率是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】探究活动:
利用函数
的图象(如图1)和性质,探究函数
的图象与性质.下面是小东的探究过程,请补充完整:
(1)函数
的自变量x的取值范围是___________;(2)如图2,小东列表描出了函数
图象上部分点,请画出函数图象;

(3)解决问题:设方程
的两根为
、
,且
,方程
的两根为
、
,且
.若
,则
、
、
、
的大小关系为_____________________(用“<”连接).
相关试题