【题目】如图,△ABC中,AB=AC,∠BAC=120°,DE垂直平分AC交BC于D,垂足为E,若DE=2cm,则BC的长为( )
![]()
A. 6cm B. 8cm C. 10cm D. 12cm
参考答案:
【答案】D
【解析】
首先连接AD,由DE垂直平分AC,可得AD=CD,由△ABC中,AB=AC,∠BAC=120°,可求得∠B=∠C=∠DAC=30°,继而求得AD与CD的长,则可求得BD的长,继而求得答案.
![]()
连接AD,
∵△ABC中,AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵DE垂直平分AC,
∴AD=CD,
∴∠DAC=∠C=30°,
∴AD=CD=2DE=2×2=4(cm),
∴∠BAD=∠BAC∠DAC=90°,
∴BD=2AD=8(cm),
∴BC=BD+CD=12(cm).
故答案选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(-2,3),B(-5,0),C(-1,0),△ABC和△A1B1C1关于x轴对称.
(1)作△ABC关于x轴对称的△A1B1C1,直接写出点A1坐标;
(2)在y轴上有一点P使AP+A1P最小,直接写出点P的坐标;
(3)请直接写出点A关于直线x=m(直线上各点的横坐标都为m)对称的点的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解决下列问题:
(1)[﹣4.5]= , <3.5>= .
(2)若[x]=2,则x的取值范围是;若<y>=﹣1,则y的取值范围是 .
(3)已知x,y满足方程组
,求x,y的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,二次函数y=﹣
x2+
x+2的图象与x轴交于点A,B(点B在点A的左侧),与y轴交于点C.过动点H(0,m)作平行于x轴的直线l,直线l与二次函数y=﹣
x2+
x+2的图象相交于点D,E.
(1)写出点A,点B的坐标;
(2)若m>0,以DE为直径作⊙Q,当⊙Q与x轴相切时,求m的值;
(3)直线l上是否存在一点F,使得△ACF是等腰直角三角形?若存在,求m的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,点M(
,
),以点M为圆心,OM长为半径作⊙M.使⊙M与直线OM的另一交点为点B,与x轴,y轴的另一交点分别为点D,A(如图),连接AM.点P是
上的动点. 
(1)写出∠AMB的度数;
(2)点Q在射线OP上,且OPOQ=20,过点Q作QC垂直于直线OM,垂足为C,直线QC交x轴于点E. ①当动点P与点B重合时,求点E的坐标;
②连接QD,设点Q的纵坐标为t,△QOD的面积为S.求S与t的函数关系式及S的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】若抛物线y=ax2+bx+c如图所示,下列四个结论: ①abc<0;②b﹣2a<0;③a﹣b+c<0;④b2﹣4ac>0.
其中正确结论的个数是( )
A.1
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次交换,如此这样,连续经过2016次变换后,正方形ABCD的对角线交点M的坐标变为 .

相关试题