【题目】如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、BN于点D、C,DO平分∠ADC.![]()
(1)求证:CD是⊙O的切线;
(2)设AD=4,AB=x (x > 0),BC=y (y > 0). 求y关于x的函数解析式.
参考答案:
【答案】
(1)证明:过O做OE⊥CD于点E,![]()
则∠OED=90°
∵⊙O与AM相切于点A
∴∠OAD=90°
∵OD平分∠ADE
∴∠ADO=∠EDO
∵OD=OD
∴△OAD≌△OED
∴OE=OA
∵OA是⊙O的半径
∴OE是⊙O的半径
∴CD是⊙O的切线
(2)解:过点D做DF⊥BC于点F,则DF=AB=x![]()
∵AD=4,BC=y
∴CF=BC-AD=y-4
由切线长定理可得:
∴DE=DA,CE=CB
∴CD=CE+ED
=BC+AD
=4+y
在Rt△DFC中,
∵CD2=DF2+FC2
∴(y+4)=x 2+(y-4)2
整理得:y=
x2
则y关于x的函数关系式为:y=
x2
解法二:连接OC,
∵CD、CB都是⊙O的切线
∴CE=CB=y
OC平分∠BCD
即:∠OCD=
∠BCD
同理:DE=AD=4
∠CDO=
∠CDA
∵AM、BN分别与⊙O相切
且AB为⊙O的直径
∴AM//BN
∴∠BCD+∠CDA=180°
∴∠OCD+∠CDO=90°
∵∠CDO+∠OCD+∠COD=180°
∴∠COD=90°
∵在Rt△DOC中,
OD2=OA2+AD2
即OD2=(
)2+42
同理可得:
OC2=(
)2+y2
∵CD=CE+ED=y+4
∴在Rt△OCD中
CD2=OC2+OD2
即(y+4)2=(
)2+42+(
)2+y2
整理得:y=
x2
则y关于x的函数关系式为:y=
x2
【解析】(1)过O做OE⊥CD于点E,则∠OED=90° ,根据切线的性质,圆的切线垂直于经过切点的半径得出∠OAD=90° ,根据角平分线的定义得出∠ADO=∠EDO ,从而根据AAS判断出△OAD≌△OED,根据全等三角形的对应边相等得出OE=OA ,根据切线的判定定理得出CD是⊙O的切线 ;
(2)解法一 :过点D做DF⊥BC于点F,则DF=AB=x ,根据矩形的性质及线段的和差得出CF=BC-AD=y-4 ,由切线长定理可得:DE=DA,CE=CB ,根据线段的和差得出CD=CE+ED=BC+AD=4+y ,在Rt△DFC中,由勾股定理得出(y+4)=x 2+(y-4)2 ,从而得出y与x之间的函数关系式 ;解法二:连接OC,根据切线长定理得出CE=CB=y ,OC平分∠BCD ,即:∠OCD=
∠BCD,同理:DE=AD=4 ,∠CDO=
∠CDA ,又AM、BN分别与⊙O相切且AB为⊙O的直径 ,故AM//BN,根据二直线平行同旁内角互补得出∠BCD+∠CDA=180° ,进而得出∠OCD+∠CDO=90° ,根据平角的定义得出∠CDO+∠OCD+∠COD=180° ,从而得出COD=90°,在Rt△DOA中,根据勾股定理得出OD2=(
)2+42 , 同理可得:OC2=( x 2 )2+y2 ,由于CD=CE+ED=y+4 ,在Rt△OCD中 ,CD2=OC2+OD2 ,即(y+4)2=( x 2 )2+42+( x 2 )2+y2 ,从而得出y与x之间的函数关系。
【考点精析】本题主要考查了切线长定理和垂径定理的推论的相关知识点,需要掌握从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角;推论1:A、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧B、弦的垂直平分线经过圆心,并且平分弦所对的两条弧C、平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧;推论2 :圆的两条平行弦所夹的弧相等才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1=∠BDC,∠2+∠3=180°.
(1) 请你判断DA与CE的位置关系,并说明理由;
(2) 若DA平分∠BDC,CE⊥AE于点E,∠1=70°,试求∠FAB的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点,点P在直线AB上运动(不与A、B两点重合).
(1)如图1,当点P在线段AB上运动时,总有:∠CPD=∠PCA+∠PDB,请说明理由;
(2)如图2,当点P在线段AB的延长线上运动时,∠CPD、∠PCA、∠PDB之间有怎样的数量关系,并说明理由;
(3)如图3,当点P在线段BA的延长线上运动时,∠CPD、∠PCA、∠PDB之间又有怎样的数量关系(只需直接给出结论)?

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人,1辆A型车和2辆B型车可以载学生110人.
(1)A、B型车每辆可分别载学生多少人?
(2)若计划租用A型车
辆,租用B型车
辆,请你设计租车方案,能一次运送所有学生,且恰好每辆车都坐满. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解:已知点P(x0 , y0)和直线y=kx+b,则点P到直线y=kx+b的距离,可用公式d=
计算.
例如:求点P(﹣1,2)到直线y=3x+7的距离.
解:因为直线y=3x+7,其中k=3,b=7.
所以点P(﹣1,2)到直线y=3x+7的距离为:d=
=
=
=
.
根据以上材料,解答下列问题:
(1)求点P(1,﹣1)到直线y=x﹣1的距离;
(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=
x+9的位置关系并说明理由;
(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上的两点A、B所表示的数分别是a和b,O为数轴上的原点,如果有理数a,b满足

(1)求a和b的值;
(2)若点P是一个动点,以每秒5个单位长度的速度从点A出发,沿数轴向右运动,请问经过多长时间,点P恰巧到达线段AB的三等分点?
(3)若点C是线段AB的中点,点M以每秒3个单位长度的速度从点C开始向右运动,同时点P以每秒5个单位长度的速度从点A出发向右运动,点N以每秒4个单位长度的速度从点B开始向左运动,点P与点M之间的距离表示为PM,点P与点N之间的距离表示为PN,是否存在某一时刻使得PM+PN=12?若存在,请求出此时点P表示的数;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,已知∠1+∠2=180°,∠2=∠B,试说明∠DEC+∠C=180°,请完成下列填空:

证明:∵∠1+∠2=180°(已知)
∴_____∥_____(____________________)
∴______=∠EFC(____________________)
又∵2=∠B(已知)
∴∠2=______(等量代换)
∴___________(内错角相等,两直线平行)
∴∠DEC+∠C=180°(两直线平行,同旁内角互补)
相关试题