【题目】如图,已知∠1=∠BDC,∠2+∠3=180°.
(1) 请你判断DA与CE的位置关系,并说明理由;
(2) 若DA平分∠BDC,CE⊥AE于点E,∠1=70°,试求∠FAB的度数.
![]()
参考答案:
【答案】(1)DA∥C E,理由见解析;(2)55°.
【解析】
(1)根据平行线的性质推出AB∥CD,推出∠2=∠ADC,求出∠ADC+∠3=180°,根据平行线的判定推出即可;
(2)求出∠ADC度数,求出∠2=∠ADC=35°,∠FAD=∠AEC=90°,代入∠FAB=∠FAD∠2求出即可.
(1)解:DA∥C E.
理由如下:∵∠1=∠BDC,∴AB∥CD. ∴∠2=∠ADC.
又∵∠2+∠3=180°,∴∠ADC+∠3=180°. ∴DA∥CE.
(2)解:∵DA平分∠BDC,∴∠ADC =
∠BDC =
∠1 =
×70°=35°.
∴∠2=∠ADC=35°.
∵CE⊥AE,AD∥EC, ∴∠FAD=∠AEC=90°.
∴∠FAB=∠FAD-∠2 = 90°-35°= 55°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图①∠1+∠2与∠B+∠C有什么关系?为什么?
(2)把图①△ABC沿DE折叠,得到图②,填空:∠1+∠2_______∠B+∠C(填“>”“<”“=”),当∠A=40°时,∠B+∠C+∠1+∠2=______.
(3)如图③,是由图①的△ABC沿DE折叠得到的,如果∠A=30°,则x+y=360°-(∠B+∠C+∠1+∠2)=360°- = ,猜想∠BDA+∠CEA与∠A的关系为

-
科目: 来源: 题型:
查看答案和解析>>【题目】商场购进一种单价为40元的书包,如果以单价50元出售,那么每月可售出30个,根据销售经验,售价每提高5元,销售量相应减少1个.
(1)请写出销售单价提高
元与总的销售利润y元之间的函数关系式;
(2)如果你是经理,为使每月的销售利润最大,那么你确定这种书包的单价为多少元?此时,最大利润是多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】根据图形及题意填空,并在括号里写上理由.
己知:如图,
,
平分
.试说明:
.解:因为
平分
(已知)所以
(角平分线的定义)因为
(已知)所以∠_________=∠__________(________)
∠____________=∠_________(___________)
所以
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点,点P在直线AB上运动(不与A、B两点重合).
(1)如图1,当点P在线段AB上运动时,总有:∠CPD=∠PCA+∠PDB,请说明理由;
(2)如图2,当点P在线段AB的延长线上运动时,∠CPD、∠PCA、∠PDB之间有怎样的数量关系,并说明理由;
(3)如图3,当点P在线段BA的延长线上运动时,∠CPD、∠PCA、∠PDB之间又有怎样的数量关系(只需直接给出结论)?

-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学初一年级有350名同学去春游,已知2辆A型车和1辆B型车可以载学生100人,1辆A型车和2辆B型车可以载学生110人.
(1)A、B型车每辆可分别载学生多少人?
(2)若计划租用A型车
辆,租用B型车
辆,请你设计租车方案,能一次运送所有学生,且恰好每辆车都坐满. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、BN于点D、C,DO平分∠ADC.

(1)求证:CD是⊙O的切线;
(2)设AD=4,AB=x (x > 0),BC=y (y > 0). 求y关于x的函数解析式.
相关试题