【题目】如图,在矩形ABCD中,E、F分别是边AB、CD上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC。
(1)求证;OE=OF;(2)若BC=
,求AB的长。
![]()
参考答案:
【答案】(1)证明见解析;(2)3.
【解析】分析:(1)根据矩形的对边平行可得AB∥CD,再根据两直线平行,内错角相等求出∠BAC=∠FCO,然后利用“角角边”证明△AOE和△COF全等,再根据全等三角形的即可得证;
(2)连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.
详解:(1)证明:在矩形ABCD中,AB∥CD,
∴∠BAC=∠FCO,
在△AOE和△COF中,
在△AOE和△COF中,
,
∴△AOE≌△COF(AAS),
∴OE=OF;
(2)解:如图,连接OB,
∵BE=BF,OE=OF,∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO, 又∵∠BEF=2∠BAC, 即2∠BAC+∠BAC=90°,
解得∠BAC=30°, ∵BC=
, ∴AC=2BC=2
,
∴AB=
=3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸中的每个小正方形的边长都是1.A、B、C三点都在格点上.

(1)请你以格线所在直线为坐标轴建立平面直角坐标系,使A、B两点的坐标分别为A(﹣2,3),B(﹣3,1),并写出C点坐标;
(2)连接AB、BC、CA得△ABC,将△ABC向右平移4个单位,画出平移后的△A1B1C1;
(3)将△A1B1C1绕点B1按顺时针方向旋转90°,画出旋转后的△A2B1C2 , 并求出在旋转过程中线段A1B1所扫过的图形的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知如下命题:①三角形的中线、角平分线、高都是线段;②三角形的三条高必交于一点;③三角形的三条角平分线必交于一点;④三角形的三条高必在三角形内.其中正确的是( )
A. ①② B. ①③ C. ②④ D. ③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了减轻学生的课业负担,某市教育行政部门规定中学生每天完成家庭作业的平均时间不能超过1.5小时,为了了解该市中学生课业负担情况,对部分学生每天完成家庭作业所用的时间进行了抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:

(1)在这次调查中共调查了多少名学生?
(2)分别求出每天完成家庭作业所用的时间为“1小时”和“2小时”的学生人数占总人数的百分比,以及所用的时间为“1.5小时”的学生人数,并补全两个统计图;
(3)本次调查中,中学生每天完成家庭作业所用的平均时间是否符合要求?并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】解下列方程(组):
(1)
(2)
(3)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC= CD=2,CD⊥CP,求∠BPC的度数

-
科目: 来源: 题型:
查看答案和解析>>【题目】某工程队(有甲、乙两组)承接了世界园艺博览会的一项小型工程任务,这项任务规定在若干天内完成.已知甲组单独完成这项工程所需时间比规定时间多20天,乙组单独完成这项工程所需时间比规定时间多10天.如果甲、乙两组先合作15天,剩下的由甲单独做,则正好如期完成,那么规定的时间是多少天?(列方程解应用题)
相关试题