【题目】如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC的值是( )
![]()
A. 10 B. 8 C. 6 D. 4
参考答案:
【答案】C
【解析】
延长BD交AC于点E,则可知△ABE为等腰三角形,则S△ABD=S△ADE,S△BDC=S△CDE,可得出S△ADC=
S△ABC.
解:如图,延长BD交AC于点E,
![]()
∵AD平分∠BAE,AD⊥BD,
∴∠BAD=∠EAD,∠ADB=∠ADE,
在△ABD和△AED中,
,
∴△ABD≌△AED(ASA),
∴BD=DE,
∴S△ABD=S△ADE,S△BDC=S△CDE,
∴S△ABD+S△BDC=S△ADE+S△CDE=S△ADC,
∴S△ADC=
S△ABC=
×12=6(m2),
故答案选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面的文字,解答问题.
大家知道
是无理数,而无理数是无限不循环小数,因此
的小数部分我们不可能全部地写出来,于是小明用
-1来表示
的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为
的整数部分是1,将这个数减去其整数部分,差就是小数部分.请解答:已知:10+
=x+y,其中x是整数,且0<y<1,求x-y的相反数. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,点D是边AB的四等分点,DE∥AC,DF∥BC,AC=8,BC=12,求四边形DECF的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,∠B=15°,DE垂直平分AB交BC于点E,BE=4,则AC长为( )

A. 2 B. 3 C. 4 D. 以上都不对
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,等边三角形ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点.若AE=2,当EF+CF取得最小值时,∠ECF的度数为( )

A. 20° B. 25° C. 30° D. 45°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸中每个小正方形的边长均为1,△A1B1C1和△A2B2C2的顶点都在方格纸的格点上.

(1)求△A1B1C1和△A2B2C2的面积比.
(2)点A1、D、E、F、G、H是△A1B1C1边上的6个格点,请在这6个格点中选取3个点作为三角形的顶点,使构成的三角形与△A2B2C2相似(要求写出2个符合条件的三角形,并分别在图1和图2中将相应三角形涂黑,不必说明理由). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:

①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.
其中正确的结论的个数是( )
A. 2个 B. 3个 C. 4个 D. 5个
相关试题