【题目】如图,四边形ABCD是矩形,把矩形沿对角线AC折叠,点B落在点E处,CE与AD相交于点O.
![]()
(1)求证:△AOE≌△COD;
(2)若∠OCD=30°,AB=
,求△AOC的面积.
参考答案:
【答案】(1)△AOE≌△COD;
(2)
.
【解析】
试题分析:(1)根据矩形的对边相等可得AB=CD,∠B=∠D=90°,再根据翻折的性质可得AB=AE,∠B=∠E,然后求出AE=CD,∠D=∠E,再利用“角角边”证明即可;
(2)根据全等三角形对应边相等可得AO=CO,解直角三角形求出CO,然后利用三角形的面积公式列式计算即可得解.
试题解析:(1)证明:∵四边形ABCD是矩形,
∴AB=CD,∠B=∠D=90°,
∵矩形ABCD沿对角线AC折叠点B落在点E处,
∴AB=AE,∠B=∠E,
∴AE=CD,∠D=∠E,
在△AOE和△COD中,
,
∴△AOE≌△COD(AAS);
(2)解:∵△AOE≌△COD,
∴AO=CO,
∵∠OCD=30°,AB=
,
∴CO=CD÷cos30°=
÷
=2,
∴△AOC的面积=
AOCD=
×2×
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,AB=3,BC=5,以点B的圆心,以任意长为半径作弧,分别交BA、BC于点P、Q,再分别以P、Q为圆心,以大于
PQ的长为半径作弧,两弧在∠ABC内交于点M,连接BM并延长交AD于点E,则DE的长为_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】列方程或不等式组解应用题:
为进一步改善某市旅游景区公共服务设施,市政府预算用资金30万元在二百余家A级景区配备两种轮椅800台,其中普通轮椅每台350元,轻便型轮椅每台450元.
(1) 如果预算资金恰好全部用完,那么能购买两种轮椅各多少台?
(2) 由于获得了不超过5万元的社会捐助,那么轻便型轮椅最多可以买多少台?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过正方形ABCD的顶点D作DE∥AC交BC的延长线于点E.

(1)判断四边形ACED的形状,并说明理由;
(2)若BD=8cm,求线段BE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下列材料:
已知:如图1,直线AB∥CD,点E是AB、CD之间的一点,连接BE、DE得到∠BED.
求证:∠BED =∠B+∠D.
图1小冰是这样做的:
证明:过点E作EF∥AB,则有∠BEF=∠B.
∵AB∥CD,∴EF∥CD.
∴∠FED=∠D.
∴∠BEF +∠FED =∠B+∠D.
即∠BED=∠B+∠D.
请利用材料中的结论,完成下面的问题:
已知:直线 AB∥CD,直线MN分别与AB、CD交于点E、F.
(1)如图2,∠BEF和∠EFD的平分线交于点G.猜想∠G的度数,并证明你的猜想;
(2)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2.求证:∠FG1 E+∠G2=180°.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC ;
(2)若∠BAC=
,试判断四边形ADCF的形状,并证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】我市开展“美丽自宫,创卫同行”活动,某校倡议学生利用双休日在“花海”参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:

(1)将条形统计图补充完整;
(2)扇形图中的“1.5小时”部分圆心角是多少度?
(3)求抽查的学生劳动时间的众数、中位数.
相关试题