【题目】已知二次函数y=﹣x2+bx+c+1,
①当b=1时,求这个二次函数的对称轴的方程;
②若c=
b2﹣2b,问:b为何值时,二次函数的图象与x轴相切?
③若二次函数的图象与x轴交于点A(x1 , 0),B(x2 , 0),且x1<x2 , 与y轴的正半轴交于点M,以AB为直径的半圆恰好过点M,二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足
=
,求二次函数的表达式.![]()
参考答案:
【答案】解:①二次函数y=﹣x2+bx+c+1的对称轴为x=
,
当b=1时,
=
,
∴当b=1时,求这个二次函数的对称轴的方程为x=
.
②二次函数y=﹣x2+bx+c+1的顶点坐标为(
,
),
∵二次函数的图象与x轴相切且c=
b2﹣2b,
∴
,解得:b=2+
或b=2﹣
,
∴b为2+
或2﹣
时,二次函数的图象与x轴相切.
③∵AB是半圆的直径,
∴∠AMB=90°,
∴∠OAM+∠OBM=90°,
∵∠AOM=∠MOB=90°,
∴∠OAM+∠OMA=90°,
∴∠OMA=∠OBM,
∴△OAM∽△OMB,
∴
,
∴OM2=OAOB,
∵二次函数的图象与x轴交于点A(x1 , 0),B(x2 , 0),
∴OA=﹣x1 , OB=x2 , x1+x2 , =b,x1x2=﹣(c+1),
∵OM=c+1,
∴(c+1)2=c+1,
解得:c=0或c=﹣1(舍去),
∴c=0,OM=1,
∵二次函数的对称轴l与x轴、直线BM、直线AM分别交于点D、E、F,且满足
=
,
∴AD=BD,DF=4DE,
DF∥OM,
∴△BDE∽△BOM,△AOM∽△ADF,
∴
,
,
∴DE=
,DF=
,
∴
×4,
∴OB=4OA,即x2=﹣4x1 ,
∵x1x2=﹣(c+1)=﹣1,
∴
,解得:
,
∴b=﹣
+2=
,
∴二次函数的表达式为y=﹣x2+
x+1.
【解析】①二次函数y=﹣x2+bx+c+1的对称轴为x=
,即可得出答案;②二次函数y=﹣x2+bx+c+1的顶点坐标为(
,
),y由二次函数的图象与x轴相切且c=
b2﹣2b,得出方程组
,求出b即可;③由圆周角定理得出∠AMB=90°,证出∠OMA=∠OBM,得出△OAM∽△OMB,得出OM2=OAOB,由二次函数的图象与x轴的交点和根与系数关系得出OA=﹣x1 , OB=x2 , x1+x2 , =b,x1x2=﹣(c+1),得出方程(c+1)2=c+1,得出c=0,OM=1,证明△BDE∽△BOM,△AOM∽△ADF,得出
,
,得出OB=4OA,即x2=﹣4x1 , 由x1x2=﹣(c+1)=﹣1,得出方程组
,解方程组求出b的值即可.
【考点精析】关于本题考查的相似三角形的应用,需要了解测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的俯角为α其中tanα=2
,无人机的飞行高度AH为500
米,桥的长度为1255米.
①求点H到桥左端点P的距离;
②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,Rt△PAB的直角顶点P(3,4)在函数y=
(x>0)的图象上,顶点A、B在函数y=
(x>0,0<t<k)的图象上,PA∥x轴,连接OP,OA,记△OPA的面积为S△OPA , △PAB的面积为S△PAB , 设w=S△OPA﹣S△PAB . ①求k的值以及w关于t的表达式;
②若用wmax和wmin分别表示函数w的最大值和最小值,令T=wmax+a2﹣a,其中a为实数,求Tmin .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图示AB为⊙O的一条弦,点C为劣弧AB的中点,E为优弧AB上一点,点F在AE的延长线上,且BE=EF,线段CE交弦AB于点D.
①求证:CE∥BF;
②若BD=2,且EA:EB:EC=3:1:
,求△BCD的面积(注:根据圆的对称性可知OC⊥AB).
-
科目: 来源: 题型:
查看答案和解析>>【题目】函数f(x)=ex(﹣x2+2x+a)在区间[a,a+1]上单调递增,则实数a的最大值为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a,b,c为正实数,且
,则
的取值范围为 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在三棱锥A﹣BCD中,E,F分别为BC,CD上的点,且BD∥平面AEF.

(1)求证:EF∥平ABD面;
(2)若AE⊥平面BCD,BD⊥CD,求证:平面AEF⊥平面ACD.
相关试题