【题目】如图,在菱形
中,
分别是边
中点,则
面积等于( )
![]()
A.
B.
C.
D.![]()
参考答案:
【答案】A
【解析】
连接AC,BD,AC交EF于点G.由菱形的性质可判断△ABC和△ADC都是等边三角形,根据中位线的性质可证AC⊥EF,在Rt△CEG中求出CG、EG的长,然后根据三角形的面积公式可求S△AEG=
,即可求解.
连接AC,BD,AC交EF于点G.
∵四边形ABCD是菱形,∠BAD=120°,
∴AC⊥BD,∠ABC=∠ADC=60°,
∴△ABC和△ADC都是等边三角形,
∴∠ACB=∠ACD=60°,
∵E、F分别是BC、CD的中点,
∴CE=CF=2,EF//BD,
∴AC⊥EF,
∴∠CEG=∠CFG=30°,
∴CG=1,
∴EG=
,AG=4-1=3,
∴S△AEG=
,
同理可求S△AFG=
,
∴
面积等于
+
=
.
故选A.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】有六张完全相同的卡片,分A,B两组,每组三张,在A组的卡片上分别画上“√、×、√”,B组的卡片上分别画上“√、×、×”,如图1所示.

(1)若将卡片无标记的一面朝上摆在桌上,再发布从两组卡片中随机各抽取一张,求两张卡片上标记都是√的概率(请用树形图法或列表法求解)
(2)若把A、B两组卡片无标记的一面对应粘贴在一起得到3张卡片,其正反面标记如图2所示,将卡片正面朝上摆放在桌上,并用瓶盖盖住标记.
①若随机揭开其中一个盖子,看到的标记是√的概率是多少?
②若揭开盖子,看到的卡片正面标记是√后,猜想它的反面也是√,求猜对的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AEF=80°,且∠A=x°,∠C=y°,∠F=z°.若
+|y-80-m|+|z-40|=0(m为常数,且0<m<100)(1) 求∠A、∠C的度数(用含m的代数式表示)
(2) 求证:AB∥CD
(3) 若∠A=40°,∠BAM=20°,∠EFM=10°,直线AM与直线FM交于点M,直接写出∠AMF的度数

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:
完成作业
单元测试
期末考试
小张
70
90
80
小王
60
75
(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;
(2)若按完成作业、单元检测、期末考试三项成绩按
的权重来确定期末评价成绩.①请计算小张的期末评价成绩为多少分?
②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,
为坐标原点,四边形
是矩形,点
的坐标分别为
,点
以
的速度从
出发向终点
运动,点
以
的速度从
出发向终点
运动,当
是以
为一腰的等腰三角形时,点
的坐标为____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克证明了格点多边形的面积公式:
,其中
表示多边形内部的格点数,
表示多边形边界上的格点数,
表示多边形的面积.如图①,


(1)请算出图②中格点多边形的面积是 .
(2)请在图③中画一个格点平行四边形,使它的面积为7,且每条边上除顶点外无其他格点.
(3)请在图④中画一个格点菱形(非正方形),使它内部和边界上都只含有4个格点,并算出它的面积是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校德育处组织“四品八德”好少年评比活动,每班只有一个名额.现某班有甲、乙、丙三名学生参与竞选,第一轮根据“品行规范”、“学习规范”进行量化考核.甲乙丙他们的量化考核成绩(单位:分)分别用两种方式进行了统计,如下表和图1:


(1)请将表和图1中的空缺部分补充完整;
(2)竞选的第二轮是由本班的50位学生进行投票,每票计6分,甲、乙、丙三人的得票情况如图2(没有弃权票,每名学生只能选一人).
①若将“品行规范”、“学习规范”、“得票”三项测试得分按4:3:3的比例确定最后成绩,通过计算谁将会被推选为校“四品八德”好少年.
②若规定得票测试分占20%,要使甲学生最后得分不低于91分,则“品行规范”成绩在总分中所占比例的取值范围应是 .
相关试题