【题目】在
中,
、
、
三边的长分别为
、
、
,求这个三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点
(即
三个顶点都在小正方形的顶点处),如图①所示.这样不需求
的高,而借用网格就能计算出它的面积.
(1)请你将
的面积直接填写在横线上.__________________
(2)我们把上述求
面积的方法叫做构图法.若
三边的长分别为
、
、
(
),请利用图②的正方形网格(每个小正方形的边长为
)画出相应的
,并求出它的面积.
(3) 若△ABC三边的长分别为
、
、
(m>0,n>0,且m≠n),请利用图③的长方形网格试运用构图法求出这三角形的面积.
![]()
参考答案:
【答案】(1)
;(2)图见解析;3a2;(3)图见解析;3mn.
【解析】
(1)依据△ABC的面积=3×31×2÷21×3÷22×3÷2进行计算即可;
(2)
是直角边长为a,2a的直角三角形的斜边;
是直角边长为2a,2a的直角三角形的斜边;
是直角边长为a,4a的直角三角形的斜边,把它整理为一个矩形的面积减去三个直角三角形的面积;
(3)
是以m,2n为直角边的直角三角形的斜边长;
是以m,4n为直角边的直角三角形的斜边长;
是以2m,2n为直角边的直角三角形的斜边长;继而可作出三角形,然后求得三角形的面积.
(1)△ABC的面积=3×31×2÷21×3÷22×3÷2=
,
故答案为:
;
(2)如图:
![]()
由图可得,S△=2a×4a![]()
![]()
=3a2;
(3)如图,
![]()
AB=
,AC=
,BC=2
,
∴S△ABC=2m×4n
×2m×2n
×m×4n
×m×2n=3mn.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学初中学生要租车去清华中学参加学习交流活动。已知出租汽车公司有甲、乙两种客车,租1辆甲型客车和2辆乙型客车每人一座可恰好坐162人;租用2辆甲型客车和1辆乙型客车每人一座恰好坐144人,出租公司的租金价格如下:甲型320元/辆,乙型460元/辆。大江中学共有660名师生,学校准备支付的租车的费用最多是5320元。
(1)求甲、乙两种型号的客车每辆各有多少个座位;
(2)若要租用甲、乙共14辆,怎样租车费用最低,并求出租车最低费用。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知二次函数y=ax2+2x+c图象经过点A (1,4)和点C (0,3).
(1)求该二次函数的解析式;
(2)结合函数图象,直接回答下列问题:
①当﹣1<x<2时,求函数y的取值范围: .
②当y≥3时,求x的取值范围: .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,矩形ABCD中,延长BC至E,连接DE,F为DE的中点,连结AF、CF且AF⊥CF.
求证:(1)∠ADF=∠BCF;
(2)BD=AD+CE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
的图象与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作Rt△ABC,且使∠ABC=30°。(1)求AC的长度;
(2)如果在第二象限内有一点
,试求四边形AOPB的面积S与m之间的函数关系式,并求当△APB与△ABC面积相等时m的值。(3)是否存在使△QAB是等腰三角形并且在坐标轴上的点Q?若存在,请写出点Q所有可能的坐标;若不存在,请说明理由。

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=
﹣x﹣3.(1)用配方法求函数图象顶点坐标、对称轴,并写出图象的开口方向;
(2)在所给网格中建立平面直角坐标系井直接画出此函数的图象.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,海中有一个小岛A,它的周围15海里内有暗礁,今有货船由西向东航行,开始在A岛南偏西60° 的B处,往东航行20海里后到达该岛南偏西30° 的C处后,货船继续向东航行,你认为货船航行途中_____ 触礁的危险.(填写:“有”或“没有”)
参考数据:sin60°=cos30°≈0.866.

相关试题