【题目】感知:
如图①,AD平分∠BAC,∠B+∠C=180°,∠B=90°.判断DB与DC的大小关系并证明.
探究:
如图②,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,DB与DC的大小关系变吗?请说明理由.
应用:
如图③,四边形ABDC中,∠B=45°,∠C=135°,DB=DC=a,则AB﹣AC= .(用含a的代数式表示)
![]()
参考答案:
【答案】感知:BD=DC;探究:见解析;应用:
a.
【解析】
感知:判断出△ADC≌△ADB,即可得出结论;探究:欲证明DB=DC,只要证明△DFC≌△DEB即可.应用:先证明△DFC≌△DEB,再证明△ADF≌△ADE,结合BD=
EB即可解决问题.
感知:解:BD=DC,
理由:∵AD平分∠BAC,
∴∠DAC=∠DAB,
∵∠B+∠C=180°,∠B=90°,
∴∠C=90°=∠B,
在△ADC和△ADB中,
,
∴△ADC≌△ADB(AAS),
∴BD=DC;
探究:
证明:如图②中,DE⊥AB于E,DF⊥AC于F,
∵DA平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF,
∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,
∴∠B=∠FCD,
在△DFC和△DEB中,
∴△DFC≌△DEB,
∴DC=DB;
应用:
解;如图③连接AD、DE⊥AB于E,DF⊥AC于F,
∵∠B+∠ACD=180°,∠ACD+∠FCD=180°,
∴∠B=∠FCD,
在△DFC和△DEB中,![]()
∴△DFC≌△DEB,
∴DF=DE,CF=BE,
在Rt△ADF和Rt△ADE中,![]()
∴Rt△ADF≌Rt△ADE,
∴AF=AE,
∴AB﹣AC=(AE+BE)﹣(AF﹣CF)=2BE,
在Rt△DEB中,∵∠DEB=90°,∠B=∠EDB=45°,BD=a,
∴BE=
BD=
a,
∴AB﹣AC=2BE=
a.![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】解不等式组

请结合题意,完成本题解答过程.
(1)解不等式①,得 ,依据是 .
(2)解不等式②,得 .
(3)解不等式③,得 .
(4)把不等式①,②和③的解集在数轴上表示出来.
(5)从图中可以找出三个不等式解集的公共部分,得不等式组的解集 .
(6)根据不等式组的解集确立出该不等式组的最大整数解为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】乘法公式的探究及应用:
数学活动课上,老师准备了若干个如图1的三种纸片,A种纸片边长为
的正方形,B种纸片是边长为
的正方形,C种纸片长为
宽为
的长方形,并用A种纸片一张,B种纸片一张,C种纸片两张拼成如图2的大正方形。(1)请用两种不同的方法表示图2大正方形的面积:
方法1:_____________________;方法2:_____________________.
(2)观察图2,请你写出下列三个代数式:
之间的等量关系;(3)类似的,请你用图1中的三种纸片拼一个图形验证:

(4)根据(2)题中的等量关系,解决如下问题:
已知:
求
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m,宽为n)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )

A. 4nB. 4mC.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB、BC、AC三边的长分别是
,
,
.(1)△ABC的面积是 ;
(2)请在图1中作出△ABC关于直线l对称的△A1B1C1;
(3)请在图2中画出△DEF,是DE、EF、DF三边的长分别是
,
,
,并判断△DEF的形状,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.
(1)求证:CE∥GF;
(2)试判断∠AED与∠D之间的数量关系,并说明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将一副三角板中的两块直角三角板的直角顶点C按如图方式叠放在一起,友情提示:∠A=60°,∠D=30°,∠E=∠B=45°.
(1)①若∠DCB=45°,则∠ACB的度数为 .
②若∠ACB=140°,则∠DCE的度数为 .
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.
(3)当∠ACE<90°且点E在直线AC的上方时,当这两块三角尺有一组边互相平行时,请直接写出∠ACE角度所有可能的值(不必说明理由).

相关试题