【题目】如图,已知在△ABC中,△ABC的外角∠ABD的平分线与∠ACB的平分线交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.
求证:(1)MO=MB;(2)MN=CN﹣BM.
![]()
参考答案:
【答案】见解析
【解析】
【试题分析】(1)因为OB是∠ABD的平分线,根据角平分线的定义,得∠0BD=∠OBM,因为MN∥BC,根据两直线平行,内错角相等,得∠0BD=∠BOM,等量代换得:∠OBM=∠BOM,
根据等角对等边,得:MO=MB
(2)因为OC是∠ACB的平分线,根据角平分线的定义,得∠BCO=∠ACO
因为MN∥BC,根据两直线平行,内错角相等,得∠BCO=∠NOC,等量代换得:∠NOC=∠NCO
根据等角对等边,得:NO=NC,由图可知,MN=NO-MO,等量代换得,MN=CN-BM.
【试题解析】
(1)∵OB是∠ABD的平分线.
∴∠0BD=∠OBM.
∵MN∥BC.
∴∠0BD=∠BOM.
∴∠OBM=∠BOM.
∴MO=MB.
(2)∵OC是∠ACB的平分线.
∴∠BCO=∠ACO.
∵MN∥BC.
∴∠BCO=∠NOC.
∴∠NOC=∠NCO.
∴NO=NC.
∵MN=NO-MO.
∴MN=CN-BM.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若两条抛物线的顶点相同,则称它们为“友好抛物线”,已知抛物线C1:y1=﹣x2+ax+b与抛物线C2:y2=2x2+4x+6为“友好抛物线”,抛物线C1与x轴交于点A、C,与y轴交于点B.

(1)求抛物线C1的表达式.
(2)若F(t,0)(﹣3<t<0)是x轴上的一点,过点F作x轴的垂线交抛物线与点P,交直线AB于点E,过点P作PD⊥AB于点D.
①是否存在点F,使PE+PD的值最大,若存在,请求出t的值;若不存在,请说明理由.
②连接PA,以AP为边作图示一侧的正方形APMN,随着点F的运动,正方形的大小、位置也随之改变.当正方形APMN中的边MN与y轴有且仅有一个交点时,求t的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是半圆O直径,半径OC⊥AB,连接AC,∠CAB的平分线AD分别交OC于点E,交
于点D,连接CD、OD,以下三个结论:①AC∥OD;②AC=2CD;③线段CD是CE与CO的比例中项,其中所有正确结论的序号是( ) 
A.①②
B.①③
C.②③
D.①②③ -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:点C在直线AB上,AC=8cm,BC=6cm,点M、N分别是AC、BC的中点,求线段MN的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,阴影部分是边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,给出下列3种割拼方法,其中能够验证平方差公式的是( )

A. ①② B. ②③ C. ①③ D. ①②③
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在长方形ABCD中,AD=BC,AB=CD,AD>AB,将长方形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积比为1:3,
(1)求证:DN=BM;(2)求ND:NA的值;(3)求MN2:BM2的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,平行四边形OABC的顶点C(3,4),边OA落在x正半轴上,P为线段AC上一点,过点P分别作DE∥OC,FG∥OA交平行四边形各边如图.若反比例函数
的图象经过点D,四边形BCFG的面积为8,则k的值为( ) 
A.16
B.20
C.24
D.28
相关试题