【题目】如图,点A、B和线段MN都在数轴上,点A、M、N、B对应的数字分别为﹣1、0、2、11.线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒.
(1)用含有t的代数式表示AM的长为
(2)当t= 秒时,AM+BN=11.
(3)若点A、B与线段MN同时移动,点A以每秒2个单位速度向数轴的正方向移动,点B以每秒1个单位的速度向数轴的负方向移动,在移动过程,AM和BN可能相等吗?若相等,请求出t的值,若不相等,请说明理由.
![]()
参考答案:
【答案】(1)
;(2)
.
【解析】分析:(1)根据点M开始表示的数结合其运动速度和时间,即可得出运动后点M的表示的数,再依据点A表示的数为-1即可得出结论;(2)分别找出AM、BN,根据AM+BN=11即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论;
(3)假设能够相等,找出AM、BN,根据AM=BN即可列出关于t的含绝对值符号的一元一次方程,解方程即可得出结论.
本题解析:(1)∵点A、M、N对应的数字分别为﹣1、0、2,线段MN沿数轴的正方向以每秒1个单位的速度移动,移动时间为t秒,
∴移动后M表示的数为t,N表示的数为t+2,
∴AM=t﹣(﹣1)=t+1.
(2)由(1)可知:BN=|11﹣(t+2)|=|9﹣t|,
∵AM+BN=11,
∴t+1+|9﹣t|=11,
解得:
(3)假设能相等 ,则点A表示的数为2t﹣1,M表示的数为t,N表示的数为t+2,B表示的数为11﹣t,
∴AM=|2t﹣1﹣t|=|t﹣1|,BN=|t+2﹣(11﹣t)|=|2t﹣9|,
∵AM=BN,
∴|t﹣1|=|2t﹣9|,
![]()
故在运动的过程中AM和BN能相等,此时运动的时间为 秒和8秒.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽
米,回答下列问题:(1)修建十字路的面积是多少平方米?
(2)草坪(阴影部分)的面积是多少?
(3)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,点D、E分别在边AC、BC上(不与点A、B、C重合),点P是直线AB上的任意一点(不与点A、B重合).设∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.
(1)如图,当点P在线段AB上运动,且n=90°时
①若PD∥BC,PE∥AC,则m=_____;
②若m=50°,求x+y的值.
(2)当点P在直线AB上运动时,直接写出x、y、m、n之间的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,C为⊙O上一点,弦AD平分∠BAC,交BC于点E,AB=6,AD=5,则AE的长为( )

A.2.5
B.2.8
C.3
D.3.2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,己知△ABC中,AB=3,AC=4,BC=5,作∠ABC的角平分线交AC于D,以D为圆心,DA为半径作圆,与射线交于点E、F.有下列结论: ①△ABC是直角三角形;②⊙D与直线BC相切;③点E是线段BF的黄金分割点;④tan∠CDF=2.
其中正确的结论有( )
A.4个
B.3个
C.2个
D.1个 -
科目: 来源: 题型:
查看答案和解析>>【题目】某商场对A、B两款运动鞋的销售情况进行了为期5天的统计,得到了这两款运动鞋每天的销售量及总销售额统计图(如图所示).已知第4天B款运动鞋的销售量是A款的
.
(1)求第4天B款运动鞋的销售量.
(2)这5天期间,B款运动鞋每天销售量的平均数和中位数分别是多少?
(3)若在这5天期间两款运动鞋的销售单价保持不变,求第3天的总销售额(销售额=销售单价×销售量).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )

A.
B.
C.
D.
相关试题