【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C. ![]()
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2
,求BC的长.
参考答案:
【答案】
(1)证明:连接OB,如图所示:
∵AC是⊙O的直径,
∴∠ABC=90°,
∴∠C+∠BAC=90°,
∵OA=OB,
∴∠BAC=∠OBA,
∵∠PBA=∠C,
∴∠PBA+∠OBA=90°,
即PB⊥OB,
∴PB是⊙O的切线
![]()
(2)解:∵⊙O的半径为2
,
∴OB=2
,AC=4
,
∵OP∥BC,
∴∠C=∠BOP,
又∵∠ABC=∠PBO=90°,
∴△ABC∽△PBO,
∴
,
即
,
∴BC=2
【解析】(1)连接OB,由圆周角定理得出∠ABC=90°,得出∠C+∠BAC=90°,再由OA=OB,得出∠BAC=∠OBA,证出∠PBA+∠OBA=90°,即可得出结论;(2)证明△ABC∽△PBO,得出对应边成比例,即可求出BC的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点E在△ABC内,∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.

(1)当α=60°时(如图1), ①判断△ABC的形状,并说明理由;
②求证:BD=
AE;
(2)当α=90°时(如图2),求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】(概念学习)
规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,一般地,把
(a≠0)记作a,读作“a的圈n次方”.(初步探究)
(1)直接写出计算结果:2③=_____,(﹣
)⑤=_____.(2)关于除方,下列说法准确的选项有_________(只需填入正确的序号)
①.任何非零数的圈2次方都等于1; ②.对于任何正整数n,1=1;
③.3④=4③ ④.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.
(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
例如: 2④=2÷2÷2÷2
=2×
×
×
=(__)2 (幂的形式)
试一试:将下列除方运算直接写成幂的形式.
5⑥=_____;(﹣
)⑩=_____;a=_____(a≠0).算一算:
④÷23+(﹣8)×2③. -
科目: 来源: 题型:
查看答案和解析>>【题目】某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:

(1)求出y与x之间的函数关系式;
(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】化简求值:
(1)
,其中
;(2)若
,且
,求
的值。 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,甲、乙分别是4等分、3等分的两个圆转盘,指针固定,转盘转动停止后,指针指向某一数字.

(1)直接写出转动甲盘停止后指针指向数字“1”的概率;
(2)小华和小明利用这两个转盘做游戏,两人分别同时转动甲、乙两个转盘,停止后,指针各指向一个数字,若两数字之积为非负数则小华胜;否则,小明胜.你认为这个游戏公平吗?请你利用列举法说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度数.

相关试题