【题目】如图,已知一次函数y1=-x+b的图象交x轴于点A(3,0),与一次函数y2=
x+1的图象交于点B,
(1)求一次函数y1=-x+b的表达式;
(2)当x取哪些值时,0<y1<y2?
![]()
参考答案:
【答案】(1)y1=-x+3;(2)![]()
【解析】
(1)由一次函数y1=-x+b的图象交x轴于点A(3,0),用待定系数法列式求解即可得到答案;
(1)先求出两个一次函数函数的交点坐标,观察图像可以直接得到答案;
解:(1)∵一次函数y1=-x+b的图象交x轴于点A(3,0),
将点A(3,0)代入y1=-x+b,
得0=-3+b,解得b=3,
所以一次函数y1=-x+b的表达式为y1=-x+3;
(2)当-x+3=
x+1时,
解得:
,即点B的横坐标为
,
观察图象可知,
当
时,0<y1<y2;
-
科目: 来源: 题型:
查看答案和解析>>【题目】己知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O点重合),点C在射线ON上,过点C作直线
,点D在点C的左边。(1)若BD平分∠ABC,
,则
_____°;(2)如图②,若
,作∠CBA的平分线交OC于E,交AC于F,试说明
;(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H.在点B运动过程中
的值是否变化?若不变,求出其值;若变化,求出变化范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是一块在电脑屏幕上出现的长方形色块图,由6个不同的正方形组成。设中间最小的一个正方形边长为1,则这个长方形色块图的面积为_____________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,点C在线段AB上,且AC=6cm,BC=14cm,点M、N分别是AC、BC的中点.

(1)求线段MN的长度;
(2)在(1)中,如果AC=acm,BC=bcm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结论,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线经过点A(-1,0)、B(3,0)、C(0,3)三点。
(1)求抛物线的解析式。
(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N若点M的横坐标为m,请用m的代数式表示MN的长。
(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由。

-
科目: 来源: 题型:
查看答案和解析>>【题目】公园里有一人设了个游戏摊位,游客只需掷一枚正方体骰子,如果出现3点,就可获得价值10元的奖品,每抛掷1次骰子只需付1元的费用.小明在摊位前观察了很久,记下了游客的中奖情况:
游客
1
2
3
4
5
6
7
抛掷次数
30
20
25
6
16
50
12
中奖次数
1
0
0
1
0
2
0
看了小明的记录,你有什么看法?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意捧出1球是红球的概率为
.(1)试求袋中绿球的个数;
(2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.

相关试题