【题目】如图1,在正方形ABCD中,点P为AD延长线上一点,连接AC、CP,过点C作CF⊥CP交于C,交AB于点F,过点B作BM⊥CF于点N,交AC于点M.
(1)若AP=
AC,BC=4,求S△ACP;
(2)若CP﹣BM=2FN,求证:BC=MC;
![]()
参考答案:
【答案】(1)S△ACP=7
;(2)证明见解析.
【解析】试题分析:(1)由正方形的性质得出AB=BC=CD=4,∠ADC=∠CDP=∠ABC=∠BCD=90°,由勾股定理求出AC,得出AP,即可求出S△ACP;(2)在CF上截取NG=FN,连接BG,则CF-CG=2FN,证出∠BCF=∠DCP,由ASA证明△BCF≌△DCP,得出CF=CP,证出CG=BM,由SAS证明△ABM≌△BCG,得出∠AMB=∠BGC,因此∠BMC=∠BGF,由线段垂直平分线的性质得出BF=BG,得出∠BFG=∠BGF,因此∠BMC=∠CBM,即可得出结论
试题解析:(1)∵四边形ABC是正方形,
∴AD∥BC,AB=BC=CD=4,∠ADC=∠CDP=∠ABC=∠BCD=90°,
∴AC=
,
∴AP=
AC=
×
=
,
∴S△ACP=
AP×CD=
×
×4=7
;
(2)证明:在CF上截取NG=FN,连接BG,如图1所示:
![]()
则CF﹣CG=2FN,
∵CF⊥CP,
∴∠PCF=90°,
∴∠BCF=∠DCP,
在△BCF和△DCP中,
,
∴△BCF≌△DCP(ASA),
∴CF=CP,
∵CP﹣BM=2FN,
∴CG=BM,
∵∠ABC=90°,BM⊥CF,
∴∠ABM=∠BCG,∠BFG=∠CBM,
在△ABM和△BCG中,
,
∴△ABM≌△BCG(SAS),
∴∠AMB=∠BGC,
∴∠BMC=∠BGF,
∵GN=FN,BM⊥CF,
∴BF=BG,
∴∠BFG=∠BGF,
∴∠BMC=∠CBM,
∴BC=MC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,则a的值是( )
A. ﹣1B. 2C. ﹣1或3D. 3
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题7分)如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F.
(1)判断线段AB与DE的数量关系和位置关系,并说明理由;
(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.

-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:9x2y﹣6xy+y=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2016湖北襄阳第25题)
如图,已知点A的坐标为(-2,0),直线y=-
+3与x轴,y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A,B,C三点.(1)请直接写出B,C两点的坐标,抛物线的解析式及顶点D的坐标;
(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F若四边形DEFP为平行四边形,求点P的坐标;
(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N点.Q从点B出发,以每秒l个单位长度的速度沿线段BA向点A运动,运动时间为t(秒).当t(秒)为何值时,存在QMN为等腰直角三角形?

-
科目: 来源: 题型:
查看答案和解析>>【题目】一个角的对称轴是它的 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】若x2+kxy+49y2是一个完全平方式,则k= .
相关试题