【题目】某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.
(1)该顾客至少可得到元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.


参考答案:

【答案】
(1)10
(2)解:画树状图如下:

从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,

因此P(不低于30元)=


【解析】(1)如果摸到0元和10元的时候,得到的购物券是最少,一共10元。
(2)根据第一次摸出后不放回,采用列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,再求出不低于30元的可能数,利用概率公式即可求解。
【考点精析】本题主要考查了列表法与树状图法和概率公式的相关知识点,需要掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率;一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n才能正确解答此题.

关闭