【题目】如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD. ![]()
(1)求证:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).
参考答案:
【答案】
(1)证明:∵⊙O切BC于D,
∴OD⊥BC,
∵AC⊥BC,
∴AC∥OD,
∴∠CAD=∠ADO,
∵OA=OD,
∴∠OAD=∠ADO,
∴∠OAD=∠CAD,
即AD平分∠CAB
(2)设EO与AD交于点M,连接ED.
![]()
∵∠BAC=60°,OA=OE,
∴△AEO是等边三角形,
∴AE=OA,∠AOE=60°,
∴AE=AO=OD,
又由(1)知,AC∥OD即AE∥OD,
∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,
∴S△AEM=S△DMO,
∴S阴影=S扇形EOD=
=
.
【解析】(1)由Rt△ABC中,∠C=90°,⊙O切BC于D,易证得AC∥OD,继而证得AD平分∠CAB.(2)如图,连接ED,根据(1)中AC∥OD和菱形的判定与性质得到四边形AEDO是菱形,则△AEM≌△DMO,则图中阴影部分的面积=扇形EOD的面积.
【考点精析】解答此题的关键在于理解切线的性质定理的相关知识,掌握切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径,以及对扇形面积计算公式的理解,了解在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的边BC上的高为AF,AC边上的高为BG,中线为AD.已知AF=6,BC=10,BG=5.
(1)求△ABC的面积;
(2)求AC的长;
(3)试说明△ABD和△ACD的面积相等.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).

(1)求b、c的值;
(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求
的最大值;
(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度数。

-
科目: 来源: 题型:
查看答案和解析>>【题目】 在△ABC中,AB=AC,Ac上的中线BD把△ABC的周长分为24cm和30cm两部分。求三角形的三边长。
-
科目: 来源: 题型:
查看答案和解析>>【题目】命题“两直线平行,内错角的平分线互相平行”是真命题吗?如果是,请给出证明;如果不是,请举出反例.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=BC,∠ABC=100°,BD是∠ABC的平分线,E是AB的中点.
(1)证明DE∥BC;(2)求∠EDB的度数.

相关试题