【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).![]()
(1)求b、c的值;
(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求
的最大值;
(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:将点A(﹣1,0)、B(3,0)带入到抛物线解析式中得:
,
解得: ![]()
(2)
解:作DN∥CF交CB于N,如图1所示.
![]()
∵DN∥CF,
∴△DEN∽△FEC,
∴
.
∵抛物线的解析式为y=﹣x2+2x+3,
∴点C的坐标为(0,3).
∴直线BC的解析式为y=﹣x+3.
令直线y=kx+1中x=0,则y=1,
即点F的坐标为(0,1).
设点D的坐标为(m,﹣m2+2m+3),则点N的坐标为(m,﹣m+3),
∴DN=﹣m2+3m,CF=3﹣1=2,
∴
=
,
∵DN=﹣m2+3m=﹣
+
的最大值为
,
∴
的最大值为 ![]()
(3)
解:假设存在符合题意的点Q.
∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴P点的坐标为(1,4),PM的解析式为x=1,
∵直线BC的解析式为y=﹣x+3,
∴M的坐标为(1,2),
∵点G的坐标为(1,0),
∴PM=GM=2.
设PM与x轴交于点G,过点G作作直线BC的平行线,如图2所示.
![]()
∴过点G与BC平行的直线为y=﹣x+1.
联立直线与抛物线解析式得:
,
解得:
或
.
∴点Q的坐标为(
,﹣
)或(
,﹣
).
∵平行线间距离处处相等,且点M为线段PG的中点,
∴点Q到直线BC的距离与点P到直线的距离相等.
故在直线BC下方的抛物线上存在点Q,使得△QMB与△PMB的面积相等,点Q的坐标为(
,﹣
)或(
,﹣
)
【解析】(1)将点A、B的坐标带入到抛物线解析式中,得出关于b、c的二元一次方程组,解方程组即可得出结论;(2)作DN∥CF交CB于N,由DN∥CF可得出△DEN∽△FEC,根据相似三角形的性质得出
,由(1)可得出抛物线的解析式,令抛物线解析式中x=0则可得出点C的坐标,由点B、C的坐标可得出直线BC的解析式,设出点D的坐标,则可得出点N的坐标,由直线DF的解析式可得出点F的坐标,从而得出DN、CF的长度,由DN的长度结合二次函数的性质即可得出结论;(3)假设存在符合题意的点Q.设PM与x轴交于点G,过点G作作直线BC的平行线.由抛物线的解析式可得出顶点P的坐标,由此得出对称轴的解析式,结合直线BC的解析式可得出点M的坐标,结合点G的坐标可知PM=GM,由此得出满足题意的点Q为“过点G与直线BC平行的直线和抛物线的交点”,由G点的坐标结合直线BC的解析式即可得出过点G与BC平行的直线的解析式,联立直线与抛物线解析式得出关于x、y的二元二次方程组,解方程即可得出结论.
【考点精析】认真审题,首先需要了解一元二次方程的定义(只有一个未知数,并且未知数的项的最高系数为2的方程为一元二次方程),还要掌握抛物线与坐标轴的交点(一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.)的相关知识才是答题的关键.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠1=∠2,G为AD边上的中点,延长BG交AC于点E,且满足BE⊥AC;F为AB上一点,CF⊥AD于点H.下列判断:①线段AG是△ABE的角平分线;②BE是△ABD边AD上的中线;③线段AE是△ABG的边BG上的高;④∠1+∠FBC+∠FCB=90°.其中正确的个数是( )

A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC的边BC上的高为AF,AC边上的高为BG,中线为AD.已知AF=6,BC=10,BG=5.
(1)求△ABC的面积;
(2)求AC的长;
(3)试说明△ABD和△ACD的面积相等.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=500,∠C=600,求∠DAE和∠BOA的度数。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.

(1)求证:AD平分∠BAC;
(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π). -
科目: 来源: 题型:
查看答案和解析>>【题目】 在△ABC中,AB=AC,Ac上的中线BD把△ABC的周长分为24cm和30cm两部分。求三角形的三边长。
相关试题