【题目】下列说法中,正确的个数有( ) ①已知直角三角形的面积为2,两直角边的比为1:2,则斜边长为
;
②直角三角形的最大边长为
,最短边长为1,则另一边长为
;
③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC为直角三角形;
④等腰三角形面积为12,底边上的高为4,则腰长为5.
A.1个
B.2个
C.3个
D.4个
参考答案:
【答案】D
【解析】解答:①、设较短的一个直角边为M,则另一个直角边为2M,所以
M×2M=2,解得M=
,2M=2
.根据勾股定理解得斜边为
.所以此项正确; ②、根据勾股定理解得,另一边=
=
,所以此项正确;
③、设∠A=x , 则∠B=5x , ∠C=6x . 因为x+5x+6x=180°解得x=15°,从而得到三个角分别为15°、75°、90°.即△ABC为直角三角形,所以此项正确;
④、已知面积和高则可以得到底边为6,又因为是等腰三角形,则底边上的高也是底边上的中线,则可以得到底边的一半为3.此时再利用勾股定理求得腰长为
=5.所以此项正确.
所以正确的有四个.
故选D.
分析:根据勾股定理以及三角形的内角和定理即可解答,此题考查了等腰三角形的性质,直角三角形的判定及勾股定理等知识点.
【考点精析】通过灵活运用三角形的内角和外角和等腰三角形的性质,掌握三角形的三个内角中,只可能有一个内角是直角或钝角;直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;等腰三角形的两个底角相等(简称:等边对等角)即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有四个三角形,分别满足下列条件:①一个角等于另外两个内角之和;②三个内角之比为3:4:5;③三边之比为5:12:13;④三边长分别为5,24,25.其中直角三角形有( )
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知顶点为A(2,一1)的抛物线与y轴交于点B,与x轴交于C、D两点,点C坐标(1,O);
(1)求这条抛物线的表达式;
(2)连接AB、BD、DA,求cos∠ABD的大小;
(3)点P在x轴正半轴上位于点D的右侧,如果∠APB=45°,求点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,AABC的三个顶点坐标为A(一3,4),B(一4,2),C(一2,1),ΔABC绕原点顺时针旋转90°,得到△A1B1C1,ΔA1B1C1向左平移2个单位,再向下平移5个单位得到△A2B2C2.
(1)画出ΔA1B1Cl和△A2B2C2
(2)P(a,b)是AABC的AC边上一点,ΔABC经旋转、平移后点P的对应点分别为P1、P2,请写出点P1、P2的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算(x-y)(-y-x)的结果是( )
A. -x2+y2 B. -x2-y2 C. x2-y2 D. x2+y2
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知数轴上有三点A、B、C,AB=60,点A对应的数是40.

(1)若BC:AC=4:7,求点C到原点的距离;
(2)如图2,在(1)的条件下,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒.经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度;
(3)如图3,在(1)的条件下,O表示原点,动点P、T分别从C、O两点同时出发向左运动,同时动点R从点A出发向右运动,点P、T、R的速度分别为5个单位长度/秒、1个单位长度/秒、2个单位长度/秒,在运动过程中,如果点M为线段PT的中点,点N为线段OR的中点.请问PT﹣MN的值是否会发生变化?若不变,请求出相应的数值;若变化,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】计算(x+3y)2-(3x+y)2的结果是( )
A. 8x2-8y2 B. 8y2-8x2 C. 8(x+y)2 D. 8(x-y)2
相关试题