【题目】某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下:(单位:km)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 第七次 |
+15 | -8 | +6 | +12 | -4 | +5 | -10 |
(1)B地在A地哪个方向,与A地相距多少千米?
(2)巡逻车在巡逻过程中,离开A地最远是多少千米?
(3)若每km耗油0.1升,问共耗油多少升?
参考答案:
【答案】(1)在A点正东16km处;(2)离A最远26km;(3)6L.
【解析】
(1)根据有理数的加法运算,可得正数或负数,根据向东记为正,向西记为负,可得答案;
(2)根据有理数的加法运算,分别计算出每次距A地的距离,可得离A地最远距离;
(3)根据行车就耗油,可得耗油量.
(1)158+6+124+510=16(千米),
答:B地在A地东方,与A地相距16千米;
(2)第一次局A地:15千米,第二次距A地:158=7千米,第三次距A地:7+6=13千米,第四次距A地:13+12=25千米,第五次距A地:254=21千米,第六次距A地:21+5=26第七次距A地:2610=16,
∵26>25>21>16>15>13>7,
答:巡逻车在巡逻过程中,离开A地最远是26千米;
(3)
(升),
答:若每km耗油0.1升,问共耗油6升.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,函数y=-x与函数y=-
的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D,求四边形ACBD的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED的周长是9.其中正确的结论是(把你认为正确结论的序号都填上.)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=k1x+7(k1<0)与x轴交于点A,与y轴交于点B,与反比例函数y=
(k2>0)在第一象限的图象交于C,D两点,点O为坐标原点,△AOB的面积为
,点C的横坐标为1.(1)求反比例函数的解析式;
(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”,请求出图中阴影部分(不含边界)所包含的所有整点的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形。



(1)拼成的正方形的面积与边长分别是多少?
(2)请在3×3方格图中,找出连接四个格点组成面积为5的正方形,并在图中画出虚线。
(3)你能把十个小正方形组成的图形纸,剪两刀并拼成正方形吗?若能,则它的边长是多少?并在图中画出裁剪的线。


-
科目: 来源: 题型:
查看答案和解析>>【题目】在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED的周长是9.其中正确的结论是(把你认为正确结论的序号都填上.)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数
(x>0,k≠0)的图像经过线段BC的中点D.
(1)求k的值;
(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。
相关试题