【题目】如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数
(x>0,k≠0)的图像经过线段BC的中点D.
![]()
(1)求k的值;
(2)若点P(x,y)在该反比例函数的图像上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围。
参考答案:
【答案】(1)k=2(2)0<x<1或x>1
【解析】解:(1)∵正方形OABC中,点B的坐标为(2,2),点D是线段BC的中点,∴点B的坐标为(1,2)。
∵反比例函数
的图像经过点D,∴
,即k=2。
(2)由(1)知反比例函数为
(x>0),
∵点P(x,y)在
(x>0)的图像上,
∴设P(x,
),则R(0,
)。
当0<x<1时,如图1,
![]()
∵四边形CQPR为矩形,∴Q(x,2)。
∴PR=x,PQ=
。
∴四边形CQPR的面积为:
。
当x>1时,如图2,
![]()
∵四边形CQPR为矩形,∴Q(x,2)。
∴PR=x,PQ=
。
∴四边形CQPR的面积为:
。
综上所述:S关于x的解析式为
, x的取值范围:0<x<1或x>1。
(1)由点B的坐标可知BCC的长度,由点D 是BC的中点可得点D的坐标。由点D在反比例函数图象上,将点D的坐标代入可求得k的值。
(2)由题意可知,四边形CQPR是矩形,分0<x<1和x>1两种情况分别用x表示PQ,PR的长度,用矩形面积公式求解。
-
科目: 来源: 题型:
查看答案和解析>>【题目】某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下:(单位:km)
第一次
第二次
第三次
第四次
第五次
第六次
第七次
+15
-8
+6
+12
-4
+5
-10
(1)B地在A地哪个方向,与A地相距多少千米?
(2)巡逻车在巡逻过程中,离开A地最远是多少千米?
(3)若每km耗油0.1升,问共耗油多少升?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形。



(1)拼成的正方形的面积与边长分别是多少?
(2)请在3×3方格图中,找出连接四个格点组成面积为5的正方形,并在图中画出虚线。
(3)你能把十个小正方形组成的图形纸,剪两刀并拼成正方形吗?若能,则它的边长是多少?并在图中画出裁剪的线。


-
科目: 来源: 题型:
查看答案和解析>>【题目】在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED的周长是9.其中正确的结论是(把你认为正确结论的序号都填上.)

-
科目: 来源: 题型:
查看答案和解析>>【题目】(8分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=
(k>0,x>0)的图象上,点D的坐标为(4,3).
(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=
(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度;已知△ABC.

(1)作出△ABC以O为旋转中心,顺时针旋转90°的△A1B1C1 , (只画出图形).
(2)作出△ABC关于原点O成中心对称的△A2B2C2 , (只画出图形),写出B2和C2的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O逆时针方向旋转90°
得到△OA1B1 .
(1)线段A1B1的长是 , ∠AOA1的度数是;
(2)连结AA1 , 求证:四边形OAA1B1是平行四边形;
(3)求四边形OAA1B1的面积.
相关试题