【题目】如图,函数y=-x与函数y=-
的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D,求四边形ACBD的面积.
![]()
参考答案:
【答案】8
【解析】根据函数y=-x与函数y=-
的图象相交于A,B两点,可以得到点A和点B的坐标,然后根据过A,B两点分别作y轴的垂线,垂足分别为点C,D,即可得到四边形ACBD的形状,然后根据平行四边形的面积公式即可解答本题.
∵函数y=-x与函数y=-
的图象相交于A,B两点,
∴
,解得,
,或
,
∴点A的坐标为(-2,2),点B的坐标为(2,-2),
∵A,B两点分别作y轴的垂线,垂足分别为点C,D,
∴AC=BD=2,AC∥BD,CD=4,
∴四边形ADBC是平行四边形,
∴四边形ACBD的面积是2×4=8.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把下列各数的序号填到相应的横线上:
①+5,②-3,③0,④-1.414,⑤17,⑥-
.正整数:______________________________________________________;
负分数:______________________________________________________;
负有理数:____________________________________________________。
-
科目: 来源: 题型:
查看答案和解析>>【题目】某厂仓库储存了部分原料,按原计划每时消耗2 t,可用60 h.由于技术革新,实际生产能力有所提高,即每时消耗的原料量大于计划消耗的原料量.设现在每时消耗原料x(单位:t),库存的原料可使用的时间为y(单位:h).
(1)写出y关于x的函数解析式,并求出自变量的取值范围;
(2)若恰好经过24 h才有新的原料进厂,为了使机器不停止运转,则x应控制在什么范围内?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=kx+b的图象与反比例函数y=
的图象交于点A(﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;
(2)求△AOB的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列四个结论:①AE∥BC;②∠ADE=∠BDC;③△BDE是等边三角形;④△AED的周长是9.其中正确的结论是(把你认为正确结论的序号都填上.)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=k1x+7(k1<0)与x轴交于点A,与y轴交于点B,与反比例函数y=
(k2>0)在第一象限的图象交于C,D两点,点O为坐标原点,△AOB的面积为
,点C的横坐标为1.(1)求反比例函数的解析式;
(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”,请求出图中阴影部分(不含边界)所包含的所有整点的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某天早上,一辆交通巡逻车从A地出发,在东西向的马路上巡视,中午到达B地,如果规定向东行驶为正,向西行驶为负,行驶纪录如下:(单位:km)
第一次
第二次
第三次
第四次
第五次
第六次
第七次
+15
-8
+6
+12
-4
+5
-10
(1)B地在A地哪个方向,与A地相距多少千米?
(2)巡逻车在巡逻过程中,离开A地最远是多少千米?
(3)若每km耗油0.1升,问共耗油多少升?
相关试题