【题目】如图,在矩形ABCD中,已知 AD>AB.在边AD上取点E,连结CE.过点E作EF⊥CE,与边AB的延长线交于点F.
(1)证明:△AEF∽△DCE.
(2)若AB=4,AE=6,AD=14,求线段AF的长.
![]()
参考答案:
【答案】(1)证明见解析;(2)12.
【解析】【试题分析】(1)根据两角对应相等,两三角形相似证明;(2)根据相似三角形的性质求解.
【试题解析】
(1)∵四边形ABCD为矩形,
∴∠A=D=90°.
∵CE⊥EF,
∴∠AEF+∠DEC=90°.
又∵∠F+∠AEF=90°,
∴∠F=∠DEC.
∴△AEF∽△DCE.
(2)∵四边形ABCD为矩形,
∴DC=AB=4.
∵AE=6,AD=14,
∴DE=AD﹣AE=8.
∵△AEF∽△DCE,
∴
,即
,
∴AF=12.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=
(k≠0)的图象交于A,B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4
,cos∠ACH=
,点B的坐标为(4,n).(1)求该反比例函数和一次函数的解析式;
(2)求△BCH的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
的表达式为
,直线
与x轴交于点D,直线
:
与x轴交于点A,且经过点B,直线
、
交于点
.(1)求m的值;
(2)求直线
的表达式;(3)根据图象,直接写出
的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】从2开始,连续的偶数相加,它们和的情况如下表:

(1)若n=7时,则S的值为___.
(2)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=___.
根据上题的规律计算:300+302+304+…+2016+2018+2020的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】探究与发现:
如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX= °;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,
),则点C的坐标为( )
A. (
,-1)B. (-1,
)C. (
,1)D. (-
,1) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,
,AD平分∠CAB,交CB于点D,过点D作
于点E.若
,CD=5,.(1)求BD的长
(2)AE与BE相等吗?说明理由。
(3)求△ABC的面积

相关试题