【题目】数学活动课上,老师提出问题:如图,有一张长4dm,宽3dm的长方形纸板,在纸板的四个角裁去四个相同的小正方形,然后把四边折起来,做成一个无盖的盒子,问小正方形的边长为多少时,盒子的体积最大.
下面是探究过程,请补充完整:
(1)设小正方形的边长为xdm,体积为ydm3,根据长方体的体积公式得到y和x的关系式: ;
(2)确定自变量x的取值范围是 ;
(3)列出y与x的几组对应值.
x/dm | … |
|
|
|
|
|
|
| 1 |
|
| … |
y/dm3 | … | 1.3 | 2.2 | 2.7 | 3.0 | 2.8 | 2.5 | 1.5 | 0.9 | … |
(说明:表格中相关数值保留一位小数)
(4)在下面的平面直角坐标系xOy中,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;
(5)结合画出的函数图象,解决问题:当小正方形的边长约为 dm时,盒子的体积最大,最大值约为 dm3.
![]()
参考答案:
【答案】(1) y= 4x3﹣14x2+12x;(2) 0<x<
; (3)见解析;(4)见解析;(5) 0.55,3.03.
【解析】
根据题意,列出y与x的函数关系式,根据盒子长宽高值为正数,求出自变量取值范围;利用图象求出盒子最大体积.
(1)由已知,y=x(4-2x)(3-2x)=4x3-14x2+12x,
故答案为:y=4x3-14x2+12x,
(2)由已
,
解得:0<x<
,
(3)根据函数关系式,当x=
时,y=3;x=1时,y=2,
(4)根据(1)画出函数图象如图,
![]()
(5)根据图象,当x=0.55dm时,盒子的体积最大,最大值约为3.03dm3.
故答案为:0.55,3.03.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.
(1)求证:BC是⊙O的切线;
(2)⊙O的半径为5,tanA=
,求FD的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA.
(1)求证:∠BAD=∠EDC;
(2)作出点E关于直线BC的对称点M,连接DM、AM,猜想DM与AM的数量关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)在图中作出△ABC关于直线m对称的△A′B′C′,并写出A′、B′、C′三点的坐标(2)猜想:坐标平面内任意点P(x,y)关于直线m对称点P′的坐标为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.
(1)当h=﹣1时,求点D的坐标;
(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC的面积是___.

-
科目: 来源: 题型:
查看答案和解析>>【题目】我们知道,两组对边分别平行的四边形叫做平行四边形。平行四边形的内角和、外角和都等于360°,根据三角形的学习经验,请你再写出平行四边形的两条性质;并证明其中一条性质
(1)______________________________________________
(2)________________________________________________

相关试题