【题目】如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,⊿ABC的顶点在格点上。 且A(1,-4),B(5,-4),C(4,-1)
【1】画出⊿ABC;
【1】求出⊿ABC 的面积;![]()
【1】若把⊿ABC向上平移2个单位长度,再向左平移4个单位长度得到⊿![]()
B
C
,在图中画出⊿![]()
B
C
,并写出B
的坐标。
![]()
参考答案:
【答案】
【1】作图略
【1】⊿ABC的面积=
ⅹ4ⅹ3=6
【1】点B’(1,-2)
![]()
【解析】
【1】根据各象限内点的符号和距坐标轴的距离可得坐标系中A、B、C三点,顺次连接三点即为△ABC;
【1】△ABC的面积等于底边4×高3÷2;
【1】把△ABC各点向上平移2个单位长度,再向左平移4个单位长度,再顺次连接平移后的各点即为平移后的△A′B′C′,根据各象限内点的符号和距坐标轴的距离可得B′的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图①在△ABC中,点D是BC边上的一点,将△ABD沿AD折叠,得到△AED,AE与BC交于点F.已知∠B=50°,∠BAD=15°,求∠AFC的度数.
(2)如图②,将△ABC纸片沿DE折叠,使点A落在四边形BCED的内部点A′的位置,∠1、∠2与∠A之间存在一定的数量关系,请判断它们之间的关系,并说明理由.
(3)如图③,将△ABC纸片沿DE折叠,使点A落在四边形BCED的外部点A′的位置,此时∠1、∠2与∠A之间也存在一定的数量关系,请直接写出它们之间的关系,无需说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”、“戏剧”、“散文”、“其他”
四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息,回答下列问题:类别
频数(人数)
频率
小说
0.5
戏剧
4
散文
10
0.25
其他
6
合计
m
1

(1)计算m=;
(2)在扇形统计图中,“其他”类所占的百分比为;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从中任意选出2名同学参加学校的戏剧社团,请用画树状图或列表的方法,求选取的2人恰好是乙和丙的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】红星中学计划组织“春季研修活动,活动组织负责人从公交公司了解到如下租车信息:
车型


载客量(人/辆)


租金(元/辆)


校方从实际情况出发,决定租用
、
型客车共
辆,而且租车费用不超过
元。(1)请为校方设计可能的租车方案;
(2)在(1)的条件下,校方根据自愿的原则,统计发现有
人参加,请问校方应如何租车,且又省钱? -
科目: 来源: 题型:
查看答案和解析>>【题目】7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )

A.a=
bB.a=3bC.a=
bD.a=4b -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.

(1)求证:△ABE≌△CDF;
(2)若AB=DB,猜想:四边形DFBE是什么特殊的四边形?并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx﹣1(k>0)的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式.

相关试题