【题目】如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx﹣1(k>0)的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式.![]()
参考答案:
【答案】解:在矩形OABC中,AB=OC=2,
∵点F是AB的中点,
∴AF=
AB=
×2=1,
又∵OA=3,
∴点F的坐标为(3,1),
∴k3﹣1=1,
解得k=3,
所以,反比例函数解析式为y= ![]()
【解析】根据矩形的性质求出AB的长,点F是AB的中点,求出AF的长,根据OA的长,可得到点F的坐标,用待定系数法求出此函数解析式。
【考点精析】解答此题的关键在于理解矩形的性质的相关知识,掌握矩形的四个角都是直角,矩形的对角线相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,⊿ABC的顶点在格点上。 且A(1,-4),B(5,-4),C(4,-1)
【1】画出⊿ABC;
【1】求出⊿ABC 的面积;

【1】若把⊿ABC向上平移2个单位长度,再向左平移4个单位长度得到⊿

B
C
,在图中画出⊿
B
C
,并写出B
的坐标。
-
科目: 来源: 题型:
查看答案和解析>>【题目】7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足( )

A.a=
bB.a=3bC.a=
bD.a=4b -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.

(1)求证:△ABE≌△CDF;
(2)若AB=DB,猜想:四边形DFBE是什么特殊的四边形?并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】某市公交公司为应对春运期间的人流高峰,计划购买A、B两种型号的公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车3辆,共需650万元,
(1)试问该公交公司计划购买A型和B型公交车每辆各需多少万元?
(2)若该公司预计在某条线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用W不超过1200万元,且确保这10辆公交车在某条线路的年均载客量总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案的总费用W最少?最少总费用是多少万元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别
成绩x分
频数(人数)
第1组
25≤x<30
4
第2组
30≤x<35
8
第3组
35≤x<40
16
第4组
40≤x<45
a
第5组
45≤x<50
10
请结合图表完成下列各题:

(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?
(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】某种型号热水器的容量为180升,设其工作时间为y分,每分的排水量为x升.
(1)写出y关于x的函数表达式和自变量x的取值范围;
(2)当每分钟的排水量为10升时,热水器工作多长时间?
(3)如果热水器可连续工作的时间不超过1小时,那么每分的排水量应控制在什么范围内?
相关试题