【题目】如图,在Rt△ABC中,∠C=90°,矩形DEFG的顶点G、F分别在AC、BC上,DE在AB上.
(1)求证:△ADG∽△FEB;
(2)若AG=5,AD=4,求BE的长.
![]()
参考答案:
【答案】(1)证明见解析;(2)
.
【解析】分析:(1)易证∠AGD=∠B,根据∠ADG=∠BEF=90°,即可证明△ADG∽△FEB;(2)根据勾股定理和相似三角形的性质解答即可.
本题解析:
(1)∵∠C=90°,∴∠A+∠B=90°;
∵四边形DEFG是矩形,∴∠GDE=∠FED=90°,∴∠GDA=∠FED=90°;
∴∠A+∠AGD=90°,∴∠B=∠AGD且∠GDA=∠FED=90°,∴△ADG∽△FEB. .
(2)在Rt△AGD中,∠GDA=90°由勾股定理得,AD+GD=AG, ∵AD=4,AG=5,∴GD=3,∵△ADG∽△FEB,∴
;
∵四边形DEFG是矩形,∴FE=DG=3;∴
, ∴ BE =
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC中,点D为AB的中点,过点D作DE∥BC交AC于E.
(1)求证:E为AC的中点;
(2)如图2,过点D作QD⊥AB交BC的延长线于Q,过点E作EP⊥AC交CB的延长线于P,连AP、AQ.若PQ=12,AP+AQ=20,求DE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,我把对角线互相垂直的四边形叫做“垂美四边形”.
(1)性质探究:如图1.已知四边形ABCD中,AC⊥BD,垂足为O,求证:AB2+CD2=AD2+BC2.
(2)解决问题:已知AB=5,BC=4,分别以△ABC的边BC和AB向外作等腰Rt△BCQ和等腰Rt△ABP.
①如图2,当∠ACB=90°,连接PQ,求PQ;
②如图3,当∠ACB≠90°,点M、N分别是AC、AP中点连接MN.若MN=
,则S△ABC= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
在直角坐标系中,
请写出
各点的坐标.
若把
向上平移2个单位,再向左平移1个单位得到
,写出
、
、
的坐标,并在图中画出平移后图形.
求出三角形ABC的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
,
,点B在x轴上,且
.
求点B的坐标;
求
的面积;
在y轴上是否存在P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请求出点P的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图点A(a,0)在x轴负半轴,点B(b,0)在x轴正半轴,点C(0,c)在y轴正半轴,且
.(1)如图1,求S△ABC;
(2)如图2,若点D(0,5),BD的延长线交AC于E,求∠AEB;
(3)如图3,在(2)的条件下,将线段BA绕点B逆时针旋转90°至线段BF,连接EF,试探究EA,EB,EF之间有怎样的数量关系,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在菱形ABCD中,M是BC边上的点(不与B,C两点重合),AB=AM,点B关于直线AM对称的点是N,连接DN,设∠ABC,∠CDN的度数分别为
,
,则
关于
的函数解析式是_______________________________.
相关试题