【题目】为了奖励学习进步的同学,某班准备购买甲、乙、丙三种不同的笔记本作为奖品,其单价分别为2元、3元、4元,购买这些笔记本需要花60元;经过协商,每种笔记本单价下降0.5元,只花了49元,那么以下哪个结论是正确的( )
A. 乙种笔记本比甲种笔记本少4本
B. 甲种笔记本比丙种笔记本多6本
C. 乙种笔记本比丙种笔记本多8本
D. 甲种笔记本与乙种笔记本共12本
参考答案:
【答案】B
【解析】
可设甲种钢笔有a支、乙种钢笔有b支、丙三种钢笔有z支,可列方程,得到整数解即可.
解:设分别甲、乙、丙三种不同的笔记本x、y、z,
根据题意得:
,
①﹣②得:x+y+z=22 ③,
③×3﹣①得,x﹣z=6,
故甲种笔记本比丙种笔记本多6本,
故选:B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“2018东台西溪半程马拉松”的赛事共有两项:A、“半程马拉松”、 B、“欢乐跑”。小明参加了该项赛事的志愿者服务工作, 组委会随机将志愿者分配到两个项目组.
(1)小明被分配到“半程马拉松”项目组的概率为________.
(2)为估算本次赛事参加“半程马拉松”的人数,小明对部分参赛选手作如下调查:
调查总人数
20
50
100
200
500
参加“半程马拉松”人数
15
33
72
139
356
参加“半程马拉松”频率
0.750
0.660
0.720
0.695
0.712
①请估算本次赛事参加“半程马拉松”人数的概率为_______.(精确到0.1)
②若本次参赛选手大约有3000人,请你估计参加“半程马拉松”的人数是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数
,导致了第一次数学危机.
是无理数的证明如下:假设
是有理数,那么它可以表示成
(
与
是互质的两个正整数).于是
,所以,
.于是
是偶数,进而
是偶数.从而可设
,所以
,
,于是可得
也是偶数.这与“
与
是互质的两个正整数”矛盾,从而可知“
是有理数”的假设不成立,所以,
是无理数.这种证明“
是无理数”的方法是( )A.综合法B.反证法C.举反例法D.数学归纳法
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,三角形
记作
在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,先将
向上平移3个单位长度,再向右平移2个单位长度,得到
.
三个顶点的坐标分别是:
______
,
______
,
______
,
在图中画出
;
平移后
的三个顶点坐标分别为:
______
、
______
、
______
;
若y轴有一点P,使
与
面积相等,则P点的坐标为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD沿x轴负方向平移a个单位长度后,点C恰好落在双曲线上,则a的值是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】 (本小题8分)已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.

(1)求证:△ABD∽△DCE;
(2)设BD=x,AE=y,求y关于x的函数关系式;
(3)当△ADE是等腰三角形时,求AE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校综合实践活动小组的同学为了解七年级学生上学期参加综合实践活动的情况,随机抽样调查了学校部分七年级学生一个学期参加综合实践活动的情况,并用得到的数据绘制了下面两幅不完整的统计图.

根据统计图中的信息解决问题:
(1)扇形统计图中的a= ,并把条形统计图补充完整;
(2)对于“综合实践活动为6天”的扇形,对应的圆心角为 度;
(3)如果全市七年级共有12000名学生,通过计算说明“综合实践活动不超过4天”的有多少名学生?
相关试题