【题目】小明在银行存入一笔零花钱.已知这种储蓄的年利率为n%,若设到期后的本息和(本金+利息)为y(元),存入的时间为x(年),那么, ![]()
(1)下列哪个图象更能反映y与x之间的函数关系?从图中你能看出存入的本金是多少元?一年后的本息和是多少元?
(2)根据(1)的图象,求出y与x的函数关系式(不要求写出自变量x的取值范围),并求出两年后的本息和.
参考答案:
【答案】
(1)解:图2能反映y与x之间的函数关系,从图中可以看出存入的本金是100元
一年后的本息和是102.25元;
(2)解:设y与x的关系式为:y=nx+100,
把(1,102.25)代入上式得n=2.25,
∴y=2.25x+100,
当x=2时,y=2.25×2+100=104.5元,
所以两年后的本息和为104.5元.
【解析】(1)图1不能反映存入的本金,由图得出,存入的本金为0;图2既可反映存入的本金为100,也可得出存入1年后的本息和为102.25;图3不能反映存入的本金,可得出存入1年后的本息和为100;图4不能反映存入的本金,可得出存入1年后的本息和为102.25;(2)由图2,根据待定系数法可将y与x之间的函数关系式表示出来,将x=2代入,可将两年后的本息和求出.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )

A.45°
B.50°
C.60°
D.75° -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一个点在第一象限及x轴、y轴上运动,且每秒移动一个单位,在第1秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动[即(0,0)→(0,1)→(1,1)→(1,0)→…],那么第35秒时质点所在位置的坐标是( )

A.(4,0)
B.(0,5)
C.(5,0)
D.(5,5) -
科目: 来源: 题型:
查看答案和解析>>【题目】某校初三(1)班50名学生参加1分钟跳绳体育考试.1分钟跳绳次数与频数经统计后绘制出下面的频数分布表(60~70表示为大于等于60并且小于70)和扇形统计图.
等级
分数段
1分钟跳绳次数段
频数(人数)
A
120
254~300
0
110~120
224~254
3
B
100~110
194~224
9
90~100
164~194
m
C
80~90
148~164
12
70~80
132~148
n
D
60~70
116~132
2
0~60
0~116
0
(1)求m、n的值;
(2)求该班1分钟跳绳成绩在80分以上(含80分)的人数占全班人数的百分比;
(3)根据频数分布表估计该班学生1分钟跳绳的平均分大约是多少?并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈
,sin31°≈
)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.

(1)发现:如图1,当E点旋转到DA的延长线上时,△ABE与△ADG的面积关系是:;
(2)引申:当正方形AEFG旋转任意一个角度时,△ABE与△ADG的面积关系是:;
(3)如图3,四边形ABMN、四边形DEAC、四边形BFGC均为正方形,则S△ABC、S△AEN、S△BMF、S△DCG的关系是;
(4)运用:某小区中有一块空地,要在其中建三个正方形健身场所(如图3),其余空地修成草坪.若已知其中一个正方形的边长为5m,另一个正方形的边长为4m,则草坪的最大面积是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F.

(1)求证:BP=DP;
(2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明;
(3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论.
相关试题