【题目】如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.![]()
(1)求证:四边形ADEF是平行四边形;
(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.
参考答案:
【答案】
(1)证明:∵BD是△ABC的角平分线,
∴∠ABD=∠DBE,
∵DE∥AB,
∴∠ABD=∠BDE,
∴∠DBE=∠BDE,
∴BE=DE;
∵BE=AF,
∴AF=DE;
∴四边形ADEF是平行四边形
(2)解:过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,
![]()
∵∠ABC=60°,BD是∠ABC的平分线,
∴∠ABD=∠EBD=30°,
∴DG=
BD=
×4=2,
∵BE=DE,
∴BH=DH=2,
∴BE=
=
,
∴DE=
,
∴四边形ADEF的面积为:DEDG=
.
【解析】(1)根据BD是△ABC的角平分线,DE∥AB,证得△BDE是等腰三角形,且BE=DE;又由BE=AF,可得DE=AF,即可证得所求结论;
(2)先过点D作DG⊥AB于点G,过点E作EH⊥BD于点H,由∠ABC=60°,BD是∠ABC的平分线,可求得DG的长,继而求得DE的长,则可求得四边形ADEF的面积.
【考点精析】掌握平行四边形的判定与性质是解答本题的根本,需要知道若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.

(1)当t为何值时,四边形PODB是平行四边形?
(2)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值;若不存在,请说明理由;
(3)△OPD为等腰三角形时,写出点P的坐标(不必写过程).
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题中,真命题有( )
①直线外一点与直线上各点连接的所有线段中,垂线段最短;
②三角形的一个外角大于任何一个内角;
③如果∠1和∠2是对顶角,那么
;④如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直.
A.1个B.2个C.3个D.4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,cos∠ABC=
,sin∠ACB=
,AC=2,分别以AB,AC为边向△ABC形外作正方形ABGF和正方形ACDE,连接EF,点M是EF的中点,连接AM,则AM的长为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了贯彻落实国家关于增强青少年体质的计划,鄂州市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商拟提供A(原味)、B(草莓味)、C(核桃味)、D(菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒形状、大小相同),为了解对学生奶口味的喜好情况,某初级中学七年级(1)班李老师对全班同学进行了调查统计,制成了如图两幅不完整的统计图.

(1)该班五种口味的学生奶的喜好人数组成一组统计数据,直接写出这组数据的平均数,并将折线统计图补充完整.
(2)在进行调查统计的第二天,李老师为班上每位同学发放一盒学生奶.喜好A味的小聪和喜好B味的小明等四位同学最后领取,剩余的学生奶放在同一纸箱里,分别有A味2盒,B味和C味各1盒,李老师从该纸箱里随机取出两盒学生奶.请你用列表法或画树状图的方法,求出这两盒牛奶恰好同时是小聪和小明喜好的学生奶的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】一次数学活动中,检验两条纸带①、②的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带①沿AB折叠,量得∠1=∠2=50°;小丽对纸带②沿GH折叠,发现GD与GC重合,HF与HE重合. 则下列判断正确的是( )

A. 纸带①的边线平行,纸带②的边线不平行 B. 纸带①、②的边线都平行
C. 纸带①的边线不平行,纸带②的边线平行 D. 纸带①、②的边线都不平行
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
,
、
的交点为
,现作如下操作:第一次操作,分别作
和
的平分线,交点为
,第二次操作,分别作
和
的平分线,交点为
,第三次操作,分别作
和
的平分线,交点为
,…
第
次操作,分别作
和
的平分线,交点为
.若
度,那
等于__________度.

相关试题