【题目】下列命题中,真命题有( )
①直线外一点与直线上各点连接的所有线段中,垂线段最短;
②三角形的一个外角大于任何一个内角;
③如果∠1和∠2是对顶角,那么
;
④如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直.
A.1个B.2个C.3个D.4个
参考答案:
【答案】B
【解析】
本题主要利用垂线段性质,三角形角的大小,对顶角等知识点解题,重在对概念的理解与运用.
此题中①直线外一点与直线上各点连接的所有线段中,垂线段最短;此项正确;
②三角形的一个外角大于任何一个内角,比如钝角三角形就不满足;此项错误;
③如果∠1和∠2是对顶角,那么
;此项正确;
④如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直.前提条件是这两条直线平行,此项错误;
综上四条①③正确,故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,已知AD=10,CD=4,B′D=2.

(1)求证:B′E=BF;
(2)求AE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.

(1)求证:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE绕旋转中心 点,按顺时针方向旋转 度得到;
(3)若BC=8,DE=6,求△AEF的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在边BC上以每秒1个单位长的速度由点C向点B运动.

(1)当t为何值时,四边形PODB是平行四边形?
(2)在线段PB上是否存在一点Q,使得ODQP为菱形?若存在,求t的值;若不存在,请说明理由;
(3)△OPD为等腰三角形时,写出点P的坐标(不必写过程).
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC中,cos∠ABC=
,sin∠ACB=
,AC=2,分别以AB,AC为边向△ABC形外作正方形ABGF和正方形ACDE,连接EF,点M是EF的中点,连接AM,则AM的长为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.

(1)求证:四边形ADEF是平行四边形;
(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了贯彻落实国家关于增强青少年体质的计划,鄂州市全面实施了义务教育学段中小学学生“饮用奶计划”的营养工程.某牛奶供应商拟提供A(原味)、B(草莓味)、C(核桃味)、D(菠萝味)、E(香橙味)等五种口味的学生奶供学生选择(所有学生奶盒形状、大小相同),为了解对学生奶口味的喜好情况,某初级中学七年级(1)班李老师对全班同学进行了调查统计,制成了如图两幅不完整的统计图.

(1)该班五种口味的学生奶的喜好人数组成一组统计数据,直接写出这组数据的平均数,并将折线统计图补充完整.
(2)在进行调查统计的第二天,李老师为班上每位同学发放一盒学生奶.喜好A味的小聪和喜好B味的小明等四位同学最后领取,剩余的学生奶放在同一纸箱里,分别有A味2盒,B味和C味各1盒,李老师从该纸箱里随机取出两盒学生奶.请你用列表法或画树状图的方法,求出这两盒牛奶恰好同时是小聪和小明喜好的学生奶的概率.
相关试题